We present a computational framework for solving the equations of inviscid gas dynamics using structured grids with embedded geometries. The novelty of the proposed approach is the use of high-order discontinuous Galerkin (dG) schemes and a shock-capturing Finite Volume (FV) scheme coupled via an $hp$ adaptive mesh refinement ($hp$-AMR) strategy that offers high-order accurate resolution of the embedded geometries. The $hp$-AMR strategy is based on a multi-level block-structured domain partition in which each level is represented by block-structured Cartesian grids and the embedded geometry is represented implicitly by a level set function. The intersection of the embedded geometry with the grids produces the implicitly-defined mesh that consists of a collection of regular rectangular cells plus a relatively small number of irregular curved elements in the vicinity of the embedded boundaries. High-order quadrature rules for implicitly-defined domains enable high-order accuracy resolution of the curved elements with a cell-merging strategy to address the small-cell problem. The $hp$-AMR algorithm treats the system with a second-order finite volume scheme at the finest level to dynamically track the evolution of solution discontinuities while using dG schemes at coarser levels to provide high-order accuracy in smooth regions of the flow. On the dG levels, the methodology supports different orders of basis functions on different levels. The space-discretized governing equations are then advanced explicitly in time using high-order Runge-Kutta algorithms. Numerical tests are presented for two-dimensional and three-dimensional problems involving an ideal gas. The results are compared with both analytical solutions and experimental observations and demonstrate that the framework provides high-order accuracy for smooth flows and accurately captures solution discontinuities.


翻译:我们提出一个计算框架,用嵌入的地貌等离心气动态方程式解决隐形气体动态的方程式。拟议方法的新颖之处是使用高端不连续加热金(dG)计划和休克加热菲里特卷(FV)计划,同时采用一个以$hp$为单位的适应性网格改进(hp$-AMR)战略,在嵌入的边界附近提供高端准确分辨率的超视离心气动态。$p$-AMR战略基于一个多层次的块式结构化域域分隔,其中每个层次由块式观测卡通电网组成,而嵌入的方程式的几何格测量与电网的相交错产生隐含的内含定义的网格网块,其中收集定期的矩形细胞细胞细胞细胞细胞元件,在嵌入的框架中,为隐含精度的内置式系统级的精度精确度分辨率解度,同时使用双细胞放大的电流-直径径直径直径直径直径直径直径直径直径直径直径直径直径直径直径的域域域域域域域域域域域域域域域域域域域域域域域图,同时在运行的轨轨轨算法上,同时使用动态的轨轨算法系统向轨的轨轨进阶阶阶阶阶阶平向轨算法系统向系统向轨算,在系统向轨的轨轨轨轨轨轨算系统向向轨算法向下进行高空基数级算法,在轨数级算算法向高直径直径直径直径直径直径直径直向向向向向的轨道的轨道的平基的轨道的轨道上,在度平向向向向的轨道上,在高空基级的轨道上的轨道上,向向向向下的平基的轨道上,在高基的轨道上,向下向下向下向下向下向下向下进行上进行上,向下进行中,向下向下向下向下向向向下向上,向下向下,向上,向下向下向下向下向下向下向下向下向下向下向下向下向下向下进行

0
下载
关闭预览

相关内容

机器学习系统设计系统评估标准
专知会员服务
31+阅读 · 2021年6月12日
【图与几何深度学习】Graph and geometric deep learning,49页ppt
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
已删除
将门创投
3+阅读 · 2019年11月25日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
大数据 | 顶级SCI期刊专刊/国际会议信息7条
Call4Papers
10+阅读 · 2018年12月29日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Arxiv
0+阅读 · 2021年7月21日
Arxiv
4+阅读 · 2019年1月14日
VIP会员
相关资讯
已删除
将门创投
3+阅读 · 2019年11月25日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
大数据 | 顶级SCI期刊专刊/国际会议信息7条
Call4Papers
10+阅读 · 2018年12月29日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Top
微信扫码咨询专知VIP会员