As a follow-up of a previous work of the authors, this work considers {\em uniform global time-renormalization functions} for the {\em gravitational} $N$-body problem. It improves on the estimates of the radii of convergence obtained therein by using a completely different technique, both for the solution to the original equations and for the solution of the renormalized ones. The aforementioned technique which the new estimates are built upon is known as {\em majorants} and allows for an easy application of simple operations on power series. The new radii of convergence so-obtained are approximately doubled with respect to our previous estimates. In addition, we show that {\em majorants} may also be constructed to estimate the local error of the {\em implicit midpoint rule} (and similarly for Runge-Kutta methods) when applied to the time-renormalized $N$-body equations and illustrate the interest of our results for numerical simulations of the solar system.


翻译:作为作者先前工作的一项后续行动,本项工作考虑了 $N-body 问题 的 ~ 统一全球时间调整功能 。 它改进了对通过使用完全不同的技术获得的趋同线的估算, 用于解决原始方程和解决重新标准化的方程。 新估计所基于的上述技术被称为 ~ em majants }, 便于在电源序列上应用简单操作。 与我们先前的估算相比, 如此实现的新的趋同线大约翻了一番。 此外, 我们显示, ~ em majants} 也可以在适用于时间调整的 $N- body 方程时, 用来估计 ~ em 默示中点规则 (和 Runge- Kutta 方法相似) 的地方错误, 并显示我们对太阳系数字模拟的兴趣 。

0
下载
关闭预览

相关内容

【ICLR2021】彩色化变换器,Colorization Transformer
专知会员服务
9+阅读 · 2021年2月9日
专知会员服务
23+阅读 · 2020年12月16日
专知会员服务
17+阅读 · 2020年9月6日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
109+阅读 · 2020年5月15日
已删除
将门创投
6+阅读 · 2019年9月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Early and Revocable Time Series Classification
Arxiv
0+阅读 · 2021年9月22日
VIP会员
相关VIP内容
相关资讯
已删除
将门创投
6+阅读 · 2019年9月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员