Every known artificial deep neural network (DNN) corresponds to an object in a canonical Grothendieck's topos; its learning dynamic corresponds to a flow of morphisms in this topos. Invariance structures in the layers (like CNNs or LSTMs) correspond to Giraud's stacks. This invariance is supposed to be responsible of the generalization property, that is extrapolation from learning data under constraints. The fibers represent pre-semantic categories (Culioli, Thom), over which artificial languages are defined, with internal logics, intuitionist, classical or linear (Girard). Semantic functioning of a network is its ability to express theories in such a language for answering questions in output about input data. Quantities and spaces of semantic information are defined by analogy with the homological interpretation of Shannon's entropy of P.Baudot and D.Bennequin in 2015). They generalize the measures found by Carnap and Bar-Hillel (1952). Amazingly, the above semantical structures are classified by geometric fibrant objects in a closed model category of Quillen, then they give rise to homotopical invariants of DNNs and of their semantic functioning. Intentional type theories (Martin-Loef) organize these objects and fibrations between them. Information contents and exchanges are analyzed by Grothendieck's derivators.
翻译:已知的每个人工深心神经网络( DNN) 都对应了古典格罗特芬迪克( Gornic Grothendieck) 的轮廓中的一个对象; 其学习动态与本体的形态变化相对应。 层层( 如CNNs 或 LSTMs ) 的偏差结构与Giraud的堆叠相对应。 这种偏差应该由一般属性负责, 也就是从受限制的学习数据中推断出来。 纤维代表的是先产类( Culoli, Thom), 人工语言被定义, 由内部逻辑、直观、 古典或线性( Girard ) 。 网络的语义功能是能够用这种语言表达理论以回答输入数据中的问题。 语层信息的数量和空间应该比照对香农的文的文本和D. Benennequinquin 。 纤维是卡纳普和Bar- Hillel( 1952) 所发现的措施, 惊人的是, 上面的文结构结构结构结构结构结构是用来用地基易变变变的理论 。 。 。 在封闭型的内, 它们的模型中, 结构结构中, 正在结构结构结构中, 将它们结构结构结构结构, 将它们组织起来, 结构结构结构结构结构结构结构,, 结构, 结构, 结构 结构 结构 结构, 结构, 结构, 结构,, 结构, 结构, 结构, 结构, 结构, 结构, 结构, 结构, 结构, 结构, 结构, 结构, 结构, 结构, 结构, 结构结构, 结构, 结构, 结构, 结构, 结构, 结构, 结构, 结构, 结构, 结构, 结构, 结构, 结构, 结构, 结构, 结构, 结构, 结构, 结构, 结构, 结构, 结构, 结构, 结构, 结构, 结构, 结构, 结构, 结构, 结构, 结构, 结构, 结构, 结构, 结构, 结构, 结构,, 结构, 结构, 结构, 结构, 结构,