Apart from the actual CPU, modern server motherboards contain other auxiliary components, for example voltage regulators for power management. Those are connected to the CPU and the separate Baseboard Management Controller (BMC) via the I2C-based PMBus. In this paper, using the case study of the widely used Supermicro X11SSL motherboard, we show how remotely exploitable software weaknesses in the BMC (or other processors with PMBus access) can be used to access the PMBus and then perform hardware-based fault injection attacks on the main CPU. The underlying weaknesses include insecure firmware encryption and signing mechanisms, a lack of authentication for the firmware upgrade process and the IPMI KCS control interface, as well as the motherboard design (with the PMBus connected to the BMC and SMBus by default). First, we show that undervolting through the PMBus allows breaking the integrity guarantees of SGX enclaves, bypassing Intel's countermeasures against previous undervolting attacks like Plundervolt/V0ltPwn. Second, we experimentally show that overvolting outside the specified range has the potential of permanently damaging Intel Xeon CPUs, rendering the server inoperable. We assess the impact of our findings on other server motherboards made by Supermicro and ASRock. Our attacks, dubbed PMFault, can be carried out by a privileged software adversary and do not require physical access to the server motherboard or knowledge of the BMC login credentials. We responsibly disclosed the issues reported in this paper to Supermicro and discuss possible countermeasures at different levels. To the best of our knowledge, the 12th generation of Supermicro motherboards, which was designed before we reported PMFault to Supermicro, is not vulnerable.


翻译:除了实际的 CPU 外, 现代服务器母板还包含其他辅助组件, 比如电源管理的电压调节器。 这些功能通过基于 I2C 的 PMBus 程序连接到 CPU 和 单独的 Baseboard 管理控制器 。 在本文中, 使用广泛使用的 Supermicro X11SSL 母板的案例研究, 我们展示了如何使用 BMC (或者使用 PMBus 访问的其他处理器) 的远程可开发软件弱点来访问 PMBus, 然后对主 CPUP 进行基于硬件的错误喷射攻击。 其内在弱点包括: 超级服务器软件加密和签名机制不安全, 缺乏对固态软件升级程序的认证和 IPMIKC 控制界面, 以及主机设计( PMBMC 和 SMBus 默认连接) 。 首先, 我们通过 PMBX 的内存质保证, 绕着 Intel 的反弹道反应器前的反弹道反应器攻击, 我们的母体机机机机头的软体进入了我们服务器的软体, 我们的软体 的软体 的软体 的软体 的软体 机的软体, 机的软体 机的机的机的机级的机的机体 的机体 机能的机级的机级的机级的机级的机级的机级的机级的机级的机级的机级的机级的机级 。

0
下载
关闭预览

相关内容

服务器,也称伺服器,是提供计算服务的设备。由于服务器需要响应服务请求,并进行处理,因此一般来说服务器应具备承担服务并且保障服务的能力。
服务器的构成包括处理器、硬盘、内存、系统总线等,和通用的计算机架构类似,但是由于需要提供高可靠的服务,因此在处理能力、稳定性、可靠性、安全性、可扩展性、可管理性等方面要求较高。
【2022新书】高效深度学习,Efficient Deep Learning Book
专知会员服务
117+阅读 · 2022年4月21日
神经常微分方程教程,50页ppt,A brief tutorial on Neural ODEs
专知会员服务
71+阅读 · 2020年8月2日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Call for Nominations: 2022 Multimedia Prize Paper Award
CCF多媒体专委会
0+阅读 · 2022年2月12日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
2+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
12+阅读 · 2020年12月10日
VIP会员
相关VIP内容
【2022新书】高效深度学习,Efficient Deep Learning Book
专知会员服务
117+阅读 · 2022年4月21日
神经常微分方程教程,50页ppt,A brief tutorial on Neural ODEs
专知会员服务
71+阅读 · 2020年8月2日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Call for Nominations: 2022 Multimedia Prize Paper Award
CCF多媒体专委会
0+阅读 · 2022年2月12日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
2+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员