Breast-conserving surgery is the most acceptable operation for breast cancer removal from an invasive and psychological point of view. Before the surgical procedure, a preoperative MRI is performed in the prone configuration, while the surgery is achieved in the supine position. This leads to a considerable movement of the breast, including the tumor, between the two poses, complicating the surgeon's task. In this work, a simulation pipeline allowing the computation of patient-specific geometry and the prediction of personalized breast material properties was put forward. Through image segmentation, a finite element model including the subject-specific geometry is established. By first computing an undeformed state of the breast, the geometrico-material model is calibrated by surface acquisition in the intra-operative stance. Using an elastic corotational formulation, the patient-specific mechanical properties of the breast and skin were identified to obtain the best estimates of the supine configuration. The final results are a Mean Absolute Error of 4.00mm for the mechanical parameters E_breast = 0.32 kPa and E_skin = 22.72 kPa, congruent with the current state-of-the-art. The Covariance Matrix Adaptation Evolution Strategy optimizer converges on average between 5 to 30 min depending on the initial parameters, reaching a simulation speed of 20s. To our knowledge, our model offers one of the best compromises between accuracy and speed. Satisfactory results were obtained for the estimation of breast deformation from preoperative to intra-operative configuration. Furthermore, we have demonstrated the clinical feasibility of such applications using a simulation framework that aims at the smallest disturbance of the actual surgical pipeline.


翻译:乳房护理手术是从侵入和心理角度最可接受的乳腺癌切除手术。 在外科手术之前,先在易变状态下进行手术性磁共振,而外科手术则在松动状态下进行。这导致乳房(包括肿瘤)在两部之间大量移动,使外科医生的任务复杂化。在这项工作中,提出了一个模拟管道,用于计算病人特定几何和预测个性化乳材料属性。通过图像分割,建立了一个包括特定主题几何测量在内的有限元素模型。首先计算出乳房不畸形状态,而通过在手术内侧位置进行表面采集校准。使用弹性调色调配方,确定了乳房和皮肤的病人特定机械特性,以获得对苏普因配置的最佳估计。最后结果为4.00毫米的模型,用于机械参数E_ 乳房=0.32 kPa 和 E_kin = 22.72 kPa, 计算出精密的精度材料模型,通过在手术内部阵列阵列阵列状态获得校准的表,在最精确的内变异性战略中,在最精确度上展示了我们最精确的模型。</s>

0
下载
关闭预览

相关内容

强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
深度学习医学图像分析文献集
机器学习研究会
18+阅读 · 2017年10月13日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
3+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Arxiv
15+阅读 · 2021年7月14日
VIP会员
相关VIP内容
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
深度学习医学图像分析文献集
机器学习研究会
18+阅读 · 2017年10月13日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
3+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Top
微信扫码咨询专知VIP会员