We formulate a new variant of the private information retrieval (PIR) problem where the user is pliable, i.e., interested in any message from a desired subset of the available dataset, denoted as pliable private information retrieval (PPIR). We consider a setup where a dataset consisting of $f$ messages is replicated in $n$ noncolluding databases and classified into $\Gamma$ classes. For this setup, the user wishes to retrieve any $\lambda\geq 1$ messages from multiple desired classes, i.e., $\eta\geq 1$, while revealing no information about the identity of the desired classes to the databases. We term this problem multi-message PPIR (M-PPIR) and introduce the single-message PPIR (PPIR) problem as an elementary special case of M-PPIR. We first derive converse bounds on the M-PPIR rate, which is defined as the ratio of the desired amount of information and the total amount of downloaded information, followed by the corresponding achievable schemes. As a result, we show that the PPIR capacity, i.e., the maximum achievable PPIR rate, for $n$ noncolluding databases matches the capacity of PIR with $n$ databases and $\Gamma$ messages. Thus, enabling flexibility, i.e., pliability, where privacy is only guaranteed for classes, but not for messages as in classical PIR, allows to trade-off privacy versus download rate. A similar insight is shown to hold for the general case of M-PPIR.
翻译:我们为私人信息检索(PIR)问题制定了一个新的变式,即用户对来自现有数据集中一个理想部分的任何信息感兴趣,称为可信赖的私人信息检索(PPIR)。我们考虑建立一个设置,将由美元信息复制到美元以外的数据库,并归入$+GAM美元类。对于这个设置,用户希望从多个想要的类别(即$\eta\geq 1美元)中获取任何$\lambda\geq 1美元的信息,同时不向数据库透露任何关于预期的数据集类别的信息,我们将此问题称为多版本信息检索(PPPIR),我们把由美元构成的信息复制到由美元组成的个人信息检索(PIR)。我们首先从M-PPIR费率中得出反差的界限,该费率的定义是信息量的预期值和下载总量之比,其次是相应的可实现计划。 i i-GPPIR 将问题多信息转换为可实现的保密性数据库,因此,PPP-IR 和 AL 美元 i 的可实现性数据 。