The primary goal of public health efforts to control HIV epidemics is to diagnose and treat people with HIV infection as soon as possible after seroconversion. The timing of initiation of antiretroviral therapy (ART) treatment after HIV diagnosis is, therefore, a critical population-level indicator that can be used to measure the effectiveness of public health programs and policies at local and national levels. However, population-based data on ART initiation are unavailable because ART initiation and prescription are typically measured indirectly by public health departments (e.g., with viral suppression as a proxy). In this paper, we present a random change-point model to infer the time of ART initiation utilizing routinely reported individual-level HIV viral load from an HIV surveillance system. To deal with the left-censoring and the nonlinear trajectory of viral load data, we formulate a flexible segmented nonlinear mixed effects model and propose a Stochastic version of EM (StEM) algorithm, coupled with a Gibbs sampler for the inference. We apply the method to a random subset of HIV surveillance data to infer the timing of ART initiation since diagnosis and to gain additional insights into the viral load dynamics. Simulation studies are also performed to evaluate the properties of the proposed method.


翻译:公共卫生努力控制艾滋病毒流行病的首要目标是在血清转化后尽快诊断和治疗艾滋病毒感染者。因此,在艾滋病毒诊断后开始抗逆转录病毒疗法治疗的时间是一个重要的人口指标,可用于衡量地方和国家各级公共卫生方案和政策的有效性,但是,没有基于人口的抗逆转录病毒疗法启动数据,因为抗逆转录病毒疗法的启动和处方通常由公共卫生部门间接衡量(例如,病毒抑制作为代名词)。在本文中,我们提出了一个随机变化点模型,以利用艾滋病毒监测系统报告的个体一级艾滋病毒病毒负荷来推算抗逆转录病毒疗法启动的时间。为了处理病毒负荷数据的左侧检查和非线轨迹,我们制定了一个灵活的非线性非线性混合效应模型,并提出了EM(StEM)算法的随机版本,以及一个用于推断的Gibbs抽样器。我们对艾滋病毒监测数据的一个随机组别采用这一方法,以推断自诊断以来抗逆转录病毒疗法启动的时间,并获得对病毒负荷特性的更多了解。还进行了模拟研究。

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
专知会员服务
39+阅读 · 2020年9月6日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员