We develop a simple model for the timely monitoring of correlated sources over a wireless network. Using this model, we study how to optimize weighted-sum average Age of Information (AoI) in the presence of correlation. First, we discuss how to find optimal stationary randomized policies and show that they are at-most a factor of two away from optimal policies in general. Then, we develop a Lyapunov drift-based max-weight policy that performs better than randomized policies in practice and show that it is also at-most a factor of two away from optimal. Next, we derive scaling results that show how AoI improves in large networks in the presence of correlation. We also show that for stationary randomized policies, the expression for average AoI is robust to the way in which the correlation structure is modeled. Finally, for the setting where correlation parameters are unknown and time-varying, we develop a heuristic policy that adapts its scheduling decisions by learning the correlation parameters in an online manner. We also provide numerical simulations to support our theoretical results.
翻译:我们开发了一个用于及时监测无线网络相关来源的简单模型。 使用这个模型, 我们研究如何在存在相关关系的情况下优化信息的平均年龄( AoI) 的加权和平均年龄( AoI ) 。 首先, 我们讨论如何找到最佳的固定随机化政策, 并显示它们最接近于2个因素, 远离一般的最佳政策。 然后, 我们开发了一个基于Lyapunov 的漂移最大重量政策, 该政策比随机化政策在实践上表现得更好, 并显示它也最接近于2个因素。 其次, 我们得出比例化结果, 显示AoI 在存在相关关系的情况下在大型网络中是如何改进的。 我们还显示, 对于固定随机化政策, 普通 AoI 的表达方式对于构建相关结构的方式来说是强大的。 最后, 在相关参数未知和时间变化的环境中, 我们开发了超常政策, 通过在线学习相关参数来调整其时间安排决定。 我们还提供数字模拟来支持我们的理论结果 。