We present fast algorithms for approximate shortest paths in the massively parallel computation (MPC) model. We provide randomized algorithms that take $poly(\log{\log{n}})$ rounds in the near-linear memory MPC model. Our results are for unweighted undirected graphs with $n$ vertices and $m$ edges. Our first contribution is a $(1+\epsilon)$-approximation algorithm for Single-Source Shortest Paths (SSSP) that takes $poly(\log{\log{n}})$ rounds in the near-linear MPC model, where the memory per machine is $\tilde{O}(n)$ and the total memory is $\tilde{O}(mn^{\rho})$, where $\rho$ is a small constant. Our second contribution is a distance oracle that allows to approximate the distance between any pair of vertices. The distance oracle is constructed in $poly(\log{\log{n}})$ rounds and allows to query a $(1+\epsilon)(2k-1)$-approximate distance between any pair of vertices $u$ and $v$ in $O(1)$ additional rounds. The algorithm is for the near-linear memory MPC model with total memory of size $\tilde{O}((m+n^{1+\rho})n^{1/k})$, where $\rho$ is a small constant. While our algorithms are for the near-linear MPC model, in fact they only use one machine with $\tilde{O}(n)$ memory, where the rest of machines can have sublinear memory of size $O(n^{\gamma})$ for a small constant $\gamma < 1$. All previous algorithms for approximate shortest paths in the near-linear MPC model either required $\Omega(\log{n})$ rounds or had an $\Omega(\log{n})$ approximation. Our approach is based on fast construction of near-additive emulators, limited-scale hopsets and limited-scale distance sketches that are tailored for the MPC model. While our end-results are for the near-linear MPC model, many of the tools we construct such as hopsets and emulators are constructed in the more restricted sublinear MPC model.


翻译:暂无翻译

0
下载
关闭预览

相关内容

ACM/IEEE第23届模型驱动工程语言和系统国际会议,是模型驱动软件和系统工程的首要会议系列,由ACM-SIGSOFT和IEEE-TCSE支持组织。自1998年以来,模型涵盖了建模的各个方面,从语言和方法到工具和应用程序。模特的参加者来自不同的背景,包括研究人员、学者、工程师和工业专业人士。MODELS 2019是一个论坛,参与者可以围绕建模和模型驱动的软件和系统交流前沿研究成果和创新实践经验。今年的版本将为建模社区提供进一步推进建模基础的机会,并在网络物理系统、嵌入式系统、社会技术系统、云计算、大数据、机器学习、安全、开源等新兴领域提出建模的创新应用以及可持续性。 官网链接:http://www.modelsconference.org/
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
30+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
31+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
14+阅读 · 2018年5月29日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
11+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
11+阅读 · 2017年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
Arxiv
76+阅读 · 2022年3月26日
Arxiv
10+阅读 · 2021年11月10日
Arxiv
14+阅读 · 2021年7月20日
Arxiv
31+阅读 · 2021年6月30日
Arxiv
35+阅读 · 2021年1月27日
Interpretable CNNs for Object Classification
Arxiv
20+阅读 · 2020年3月12日
SlowFast Networks for Video Recognition
Arxiv
19+阅读 · 2018年12月10日
Learning Embedding Adaptation for Few-Shot Learning
Arxiv
16+阅读 · 2018年12月10日
Learning Implicit Fields for Generative Shape Modeling
Arxiv
10+阅读 · 2018年12月6日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
14+阅读 · 2018年5月29日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
11+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关论文
Arxiv
76+阅读 · 2022年3月26日
Arxiv
10+阅读 · 2021年11月10日
Arxiv
14+阅读 · 2021年7月20日
Arxiv
31+阅读 · 2021年6月30日
Arxiv
35+阅读 · 2021年1月27日
Interpretable CNNs for Object Classification
Arxiv
20+阅读 · 2020年3月12日
SlowFast Networks for Video Recognition
Arxiv
19+阅读 · 2018年12月10日
Learning Embedding Adaptation for Few-Shot Learning
Arxiv
16+阅读 · 2018年12月10日
Learning Implicit Fields for Generative Shape Modeling
Arxiv
10+阅读 · 2018年12月6日
相关基金
国家自然科学基金
11+阅读 · 2017年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员