We present an accurate, fast and efficient method for segmentation and muscle mask propagation in 3D freehand ultrasound data, towards accurate volume quantification. A deep Siamese 3D Encoder-Decoder network that captures the evolution of the muscle appearance and shape for contiguous slices is deployed. We uses it to propagate a reference mask annotated by a clinical expert. To handle longer changes of the muscle shape over the entire volume and to provide an accurate propagation, we devise a Bidirectional Long Short Term Memory module. Also, to train our model with a minimal amount of training samples, we propose a strategy combining learning from few annotated 2D ultrasound slices with sequential pseudo-labeling of the unannotated slices. We introduce a decremental update of the objective function to guide the model convergence in the absence of large amounts of annotated data. After training with a small number of volumes, the decremental update transitions from a weakly-supervised training to a few-shot setting. Finally, to handle the class-imbalance between foreground and background muscle pixels, we propose a parametric Tversky loss function that learns to adaptively penalize false positives and false negatives. We validate our approach for the segmentation, label propagation, and volume computation of the three low-limb muscles on a dataset of 61600 images from 44 subjects. We achieve a Dice score coefficient of over $95~\%$ and a volumetric error \textcolor{black}{of} $1.6035 \pm 0.587~\%$.
翻译:我们提出了一个精确、快速和有效的方法,用于3D自由超声波数据中的分解和肌肉遮罩传播,以精确量量化。一个深度的Siames 3D Eccoder-Decoder 网络,以捕捉相邻切片肌肉外观和形状的演化。我们用它来传播一个由临床专家附加说明的参考面罩。为了在整个体积中处理肌肉形状的更长期变化并提供准确的传播,我们设计了一个双向长期短期内存模块。此外,为了用最低数量的培训样本来培训我们的模型,我们提出了一个战略,将几个注解的2D超声波切片和未注解切片的顺序假标签相结合。我们引入了客观功能的衰减性更新,以便在没有大量附加说明的数据的情况下指导模型的趋同。经过少量的体积培训后,我们设计了一个从弱度的超度训练到微量的短期内存模块。最后,为了处理表面和背景肌肉平面的分级间平衡,我们建议用一个模拟的平面的平面的平面平面平面平面的平面的平面的平面的平面平面平面的平面图,我们提出一个模拟的平面的平面的平面的平面的平面的平面的平面的平面的平面的平面的平面的平面的平面的平面的平面的平面的平面的平面的平面的平面的平面的平面的平面的平面的平面的平面的平面图。