We provide the first $\mathit{constant}$-$\mathit{round}$ construction of post-quantum non-malleable commitments under the minimal assumption that $\mathit{post}$-$\mathit{quantum}$ $\mathit{one}$-$\mathit{way}$ $\mathit{functions}$ exist. We achieve the standard notion of non-malleability with respect to commitments. Prior constructions required $\Omega(\log^*\lambda)$ rounds under the same assumption. We achieve our results through a new technique for constant-round non-malleable commitments which is easier to use in the post-quantum setting. The technique also yields an almost elementary proof of security for constant-round non-malleable commitments in the classical setting, which may be of independent interest. As an application, when combined with existing work, our results yield the first constant-round post-quantum secure multiparty computation under the $\mathit{polynomial}$ hardness of quantum fully-homomorphic encryption and quantum learning with errors.
翻译:我们提供了第一个$mathit{cont}$-$-mathit}$-$-mathit{put{quantum}$-$-$mathit{t{one}$-$-$mathit{way}$_wayt{wayt}$\mathit{forms}$-$-mathitt}$-$-$-mathitt{unt}_ground} 美元,在最低假设下建造后不可变的后承诺。在最低假设下,我们通过采用新的技术实现我们的成果,即:$\mega(log ⁇ ){lambda)$-met-mattmall{pall}$-palln-polable-polable承诺,这在等离子环境下更容易使用。这种技术也为古典环境中的不变的不可变数承诺提供了几乎基本的安全证据,而这种承诺可能具有独立的利益。作为应用,当与现有工作相结合时,我们的结果产生第一个常数后安全多党制计算结果,根据$\{polynomomomal=Q的硬度的硬度校正和Q。