The presentation and analysis of image data from a single viewpoint are often not sufficient to solve a task. Several viewpoints are necessary to obtain more information. The next-best-view problem attempts to find the optimal viewpoint with the greatest information gain for the underlying task. In this work, a robot arm holds an object in its end-effector and searches for a sequence of next-best-view to explicitly identify the object. We use Soft Actor-Critic (SAC), a method of deep reinforcement learning, to learn these next-best-views for a specific set of objects. The evaluation shows that an agent can learn to determine an object pose to which the robot arm should move an object. This leads to a viewpoint that provides a more accurate prediction to distinguish such an object from other objects better. We make the code publicly available for the scientific community and for reproducibility.
翻译:从单一角度展示和分析图像数据往往不足以解决问题。 要获取更多信息, 需要几种观点。 下一个最佳观点问题试图找到最佳观点, 从而获得对基本任务的最大信息。 在这项工作中, 机器人臂在最终效果上持有一个对象, 并搜索下一个最佳观点序列以明确识别对象。 我们使用Soft Actor- Critic (SAC), 这是一种深层强化学习的方法, 来学习对特定对象组的这些次最佳观点。 评估显示, 代理人可以学习确定机器人臂向哪个物体移动的物体构成的物体。 这导致一种观点, 提供更准确的预测, 将此类物体与其他对象更好地区分开来。 我们向科学界公开该代码, 供复制使用 。