The purpose of this article is to develop a general parametric estimation theory that allows the derivation of the limit distribution of estimators in non-regular models where the true parameter value may lie on the boundary of the parameter space or where even identifiability fails. For that, we propose a more general local approximation of the parameter space (at the true value) than previous studies. This estimation theory is comprehensive in that it can handle penalized estimation as well as quasi-maximum likelihood estimation under such non-regular models. Besides, our results can apply to the so-called non-ergodic statistics, where the Fisher information is random in the limit, including the regular experiment that is locally asymptotically mixed normal. In penalized estimation, depending on the boundary constraint, even the Bridge estimator with $q<1$ does not necessarily give selection consistency. Therefore, some sufficient condition for selection consistency is described, precisely evaluating the balance between the boundary constraint and the form of the penalty. Examples handled in the paper are: (i) ML estimation of the generalized inverse Gaussian distribution, (ii) quasi-ML estimation of the diffusion parameter in a non-ergodic It\^o process whose parameter space consists of positive semi-definite symmetric matrices, while the drift parameter is treated as nuisance and (iii) penalized ML estimation of variance components of random effects in linear mixed models.
翻译:本条的目的是发展一个一般性的参数估计理论,以便能够得出非常规模型中估计者限值分布的限定值,在非常规模型中,真正的参数值可能位于参数空间的边界上,或者甚至识别性失效;为此,我们提议对参数空间(按真实值)进行比以往研究更为笼统的局部近似值(按真实值),这一估算理论是全面的,因为它能够处理这种非常规模型下的惩罚性估计以及准最大可能性估计。此外,我们的结果可以适用于所谓的非随机统计,即渔业者信息在限值中随机,包括定期实验,在局部是随机混杂的正常。为此,根据边界限制,我们提议对参数空间空间空间空间空间空间空间空间空间空间空间分布的准-ML值估算值,在混合的模型中,在混合的模型中,对空间空间分布的精确度的精确度的精确度的精确度的精确度的精确度。