It is argued that all model based approaches to the selection of covariates in linear regression have failed. This applies to frequentist approaches based on P-values and to Bayesian approaches although for different reasons. In the first part of the paper 13 model based procedures are compared to the model-free Gaussian covariate procedure in terms of the covariates selected and the time required. The comparison is based on four data sets and two simulations. There is nothing special about these data sets which are often used as examples in the literature. All the model based procedures failed. In the second part of the paper it is argued that the cause of this failure is the very use of a model. If the model involves all the available covariates standard P-values can be used. The use of P-values in this situation is quite straightforward. As soon as the model specifies only some unknown subset of the covariates the problem being to identify this subset the situation changes radically. There are many P-values, they are dependent and most of them are invalid. The Bayesian paradigm also assumes a correct model but although there are no conceptual problems with a large number of covariates there is a considerable overhead causing computational and allocation problems even for moderately sized data sets. The Gaussian covariate procedure is based on P-values which are defined as the probability that a random Gaussian covariate is better than the covariate being considered. These P-values are exact and valid whatever the situation. The allocation requirements and the algorithmic complexity are both linear in the size of the data making the procedure capable of handling large data sets. It outperforms all the other procedures in every respect.
翻译:认为所有基于模型的线性回归中共变量选择方法都失败。 这适用于基于 P 值的常态方法, 也适用于巴伊西亚方法, 尽管原因不同。 在纸张的第一部分中, 13 模型基础程序与无模型的高斯共变量程序比较, 以所选的共变量和所需时间比较。 比较以四个数据集和两个模拟为基础。 这些数据集在文献中经常用作示例。 所有基于模型的程序都失败。 在论文的第二部分中, 失败的原因是模型的使用本身。 如果模型包含所有可用的共变量标准P值, 可以使用。 在此情况下, P 值的使用非常直截了当。 当模型仅指定一些未知的共变量组时, 问题就是快速识别该子集的情况变化。 有许多P 值, 它们依赖所有基于模型的复杂程序都无效 。 巴伊斯珀尔的模型也假设一个正确的模型, 但是处理一个模型是完全使用模型。 如果模型包含所有可用的标准 P- 标准值, 则可以使用这个模型, 那么, 就会使用一个更大的共价值 。 在计算中, 将一个大的共值 的计算中,, 将数据序列中, 将有一个更大的共值 。