Autoencoding has been a popular topic across many fields and recently emerged in the 3D domain. However, many 3D representations (e.g., point clouds) are discrete samples of the underlying continuous 3D surface which makes them different from other data modalities. This process inevitably introduces sampling variations on the underlying 3D shapes. In learning 3D representation, a desirable goal is to disregard such sampling variations while focusing on capturing transferable knowledge of the underlying 3D shape. This aim poses a grand challenge to existing representation learning paradigms. For example, the standard autoencoding paradigm forces the encoder to capture such sampling variations as the decoder has to reconstruct the original point cloud. In this paper, we introduce the Implicit Autoencoder(IAE). This simple yet effective method addresses this challenge by replacing the point cloud decoder with an implicit decoder. The implicit decoder can output a continuous representation that is shared among different point cloud samplings of the same model. Reconstructing under the implicit representation can prioritize that the encoder discards sampling variations, introducing appropriate inductive bias to learn more generalizable feature representations. We validate this claim via experimental analysis. Moreover, our implicit decoder offers excellent flexibility in designing suitable implicit representations for different tasks. We demonstrate the usefulness of IAE across various self-supervised learning tasks for both 3D objects and 3D scenes. Experimental results show that IAE consistently outperforms the state-of-the-art in each task.
翻译:自动编码在许多领域都是一个流行的话题,最近又出现在 3D 域域中。 但是, 许多 3D 示意图( 如点云) 是基础连续 3D 表面的离散样本, 使得它们与其他数据模式不同。 这个过程不可避免地在 3D 形状中引入了抽样变异。 在学习 3D 表示方式时, 一个可取的目标就是忽略这种抽样变异, 同时侧重于获取对 3D 基本形状的可转让知识。 这个目的对现有代表方式的学习模式提出了巨大挑战。 例如, 标准的自动编码模式迫使编码器捕捉采样变异, 如解码器必须重建原始点云。 在本文中, 我们引入了隐性自动编码变异, 这个简单而有效的方法解决了这一挑战, 以隐含的解码表示方式取代点云变异。 隐含的解码可以产生一种连续的代号, 在同一模型的不同点的云采样中共享。 在隐含的表示式表示方式下, 可以优先考虑编码变异, 引入适当的隐含偏差,, 在设计各种不显性任务中, 我们通过实验性变的自我分析, 显示各种自我变变现 。