Modeling and re-rendering dynamic 3D scenes is a challenging task in 3D vision. Prior approaches build on NeRF and rely on implicit representations. This is slow since it requires many MLP evaluations, constraining real-world applications. We show that dynamic 3D scenes can be explicitly represented by six planes of learned features, leading to an elegant solution we call HexPlane. A HexPlane computes features for points in spacetime by fusing vectors extracted from each plane, which is highly efficient. Pairing a HexPlane with a tiny MLP to regress output colors and training via volume rendering gives impressive results for novel view synthesis on dynamic scenes, matching the image quality of prior work but reducing training time by more than $100\times$. Extensive ablations confirm our HexPlane design and show that it is robust to different feature fusion mechanisms, coordinate systems, and decoding mechanisms. HexPlanes are a simple and effective solution for representing 4D volumes, and we hope they can broadly contribute to modeling spacetime for dynamic 3D scenes.
翻译:在 3D 愿景中, 建模和复制动态 3D 场景是一项具有挑战性的任务 。 先前的方法以 NERF 为基础, 并依赖于隐含的表达方式 。 这是缓慢的, 因为它需要许多 MLP 评估, 限制真实世界应用程序 。 我们显示, 动态 3D 场景可以由六个具有学习特点的平面来明确代表, 导致我们称之为 HexPlane 的优雅解决方案 。 一种HexPlane 计算空间时间点的功能, 方法是将从每架飞机上提取的矢量引信熔化, 效率很高 。 配有微小 MLP 的Hex Plane, 通过量转换输出颜色和培训, 给动态场景的新视角合成带来令人印象深刻的结果, 匹配先前工作的图像质量, 并将培训时间减少100 美元以上 。 广泛的汇总证实了我们的 HexPlane 设计, 并显示它对不同的特性融合机制、 协调系统以及解码机制非常强大。 HexPlan 代表 4D 卷 的简单而有效的解决方案, 我们希望它们能够为动态 3D 场景的空间时间建模。