Suppose that a random variable $X$ of interest is observed. This paper concerns "the least favorable noise" $\hat{Y}_{\epsilon}$, which maximizes the prediction error $E [X - E[X|X+Y]]^2 $ (or minimizes the variance of $E[X| X+Y]$) in the class of $Y$ with $Y$ independent of $X$ and $\mathrm{var} Y \leq \epsilon^2$. This problem was first studied by Ernst, Kagan, and Rogers ([3]). In the present manuscript, we show that the least favorable noise $\hat{Y}_{\epsilon}$ must exist and that its variance must be $\epsilon^2$. The proof of existence relies on a convergence result we develop for variances of conditional expectations. Further, we show that the function $\inf_{\mathrm{var} Y \leq \epsilon^2} \, \mathrm{var} \, E[X|X+Y]$ is both strictly decreasing and right continuous in $\epsilon$.
翻译:假设观察到一个随机的可变利息美元值。 本文涉及“ 最不有利的噪音” $\ hat{ Y<unk> silon} $\ hat{ Y<unk> silon} $, 这会最大限度地增加美元[ X - E[ X<unk> X+Y]]] $的预测误差。 2美元( 或将美元[ X<unk> X+Y] $的差额最小化为$[ X<unk> X+Y] 美元) 美元( 美元与美元[ X<unk> X+Y] 美元不相容) 。 此外, 我们显示, 恩斯特、 卡根 和 罗杰斯 ([ 3] 首次研究这个问题。 在目前的手稿中, 我们显示最不有利的噪音必须存在美元[, 美元[ Y<unk> X+Y] 的差额必须达到$\ eepsilon。 存在的证据取决于我们为有条件的预期差异而得出的趋同结果。 此外, 我们显示, $\ mathrm{ { { { { {leq\ \ epslon2}\, = $ [ X\ x\ 正在严格地减少和连续的 $ 。</s>