In this article, we develop and analyze a finite element method with the first family N\'ed\'elec elements of the lowest degree for solving a Maxwell interface problem modeled by a $\mathbf{H}(\text{curl})$-elliptic equation on unfitted meshes. To capture the jump conditions optimally, we construct and use $\mathbf{H}(\text{curl})$ immersed finite element (IFE) functions on interface elements while keep using the standard N\'ed\'elec functions on all the non-interface elements. We establish a few important properties for the IFE functions including the unisolvence according to the edge degrees of freedom, the exact sequence relating to the $H^1$ IFE functions and the optimal approximation capabilities. In order to achieve the optimal convergence rates, we employ a Petrov-Galerkin method in which the IFE functions are only used as the trial functions and the standard N\'ed\'elec functions are used as the test functions which can eliminate the non-conformity errors. We analyze the inf-sup conditions under certain conditions and show the optimal convergence rates which are also validated by numerical experiments.


翻译:在此文章中, 我们开发并分析一种限定元素方法, 使用第一个家庭元素 N\' ed\' elec 的最小元素解决 Maxwell 界面问题, 以 $\ mathbf{H} (\ text{curl}) $- Exliptic 等方程式为模型, 用于不合适的 meshes 。 为了最优化地捕捉跳跃条件, 我们构建并使用$\ mathbf{H} (\ text{curl}) (\ text{curl}), 用于界面元素的浸入的最小元素( IFE), 同时在所有非界面元素上继续使用标准 N\' ed\' elec 函数。 我们为 IFE 函数设置了几个重要属性, 包括根据自由边缘度、 $H\ $ 1$ IFE 函数的精确序列和最佳近似能力。 为了实现最佳的趋同率, 我们使用 Petrovev- Galkin 方法,, 将 IFE 函数仅用作试验功能, 和标准 N\ ed\\\\ eleeclection 函数用作可以消除不一致性错误的测试条件。

0
下载
关闭预览

相关内容

Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
111+阅读 · 2020年5月15日
因果图,Causal Graphs,52页ppt
专知会员服务
248+阅读 · 2020年4月19日
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
30+阅读 · 2019年10月18日
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
已删除
将门创投
7+阅读 · 2018年11月5日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年1月11日
Computation of Optimal Transport with Finite Volumes
Implicit Maximum Likelihood Estimation
Arxiv
7+阅读 · 2018年9月24日
VIP会员
相关资讯
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
已删除
将门创投
7+阅读 · 2018年11月5日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员