We consider probabilistic systems with hidden state and unobservable transitions, an extension of Hidden Markov Models (HMMs) that in particular admits unobservable {\epsilon}-transitions (also called null transitions), allowing state changes of which the observer is unaware. Due to the presence of {\epsilon}-loops this additional feature complicates the theory and requires to carefully set up the corresponding probability space and random variables. In particular we present an algorithm for determining the most probable explanation given an observation (a generalization of the Viterbi algorithm for HMMs) and a method for parameter learning that adapts the probabilities of a given model based on an observation (a generalization of the Baum-Welch algorithm). The latter algorithm guarantees that the given observation has a higher (or equal) probability after adjustment of the parameters and its correctness can be derived directly from the so-called EM algorithm.
翻译:我们认为隐蔽状态和不可观察过渡的概率系统、隐藏马可夫模型(HMMs)的延伸(HMMs)特别承认不可观察的 ~silon}-过渡(也称为无效过渡), 允许观察员不知道的状态变化。 由于存在 ~silon}-lops, 这一额外特性使理论复杂化, 需要仔细设置相应的概率空间和随机变量。 特别是我们提出了一个算法, 用于根据观察确定最可能的解释( Viterbi 算法的通用), 以及一种参数学习方法, 以根据观察( Baum- Welch 算法的概括化) 来调整给定模型的概率。 后一种算法保证在调整参数及其正确性之后, 特定观察具有更高的( 或相等的) 概率, 可以直接从所谓的 EM算法中得出。