Recently, unsupervised local learning, based on Hebb's idea that change in synaptic efficacy depends on the activity of the pre- and postsynaptic neuron only, has shown potential as an alternative training mechanism to backpropagation. Unfortunately, Hebbian learning remains experimental and rarely makes it way into standard deep learning frameworks. In this work, we investigate the potential of Hebbian learning in the context of standard deep learning workflows. To this end, a framework for thorough and systematic evaluation of local learning rules in existing deep learning pipelines is proposed. Using this framework, the potential of Hebbian learned feature extractors for image classification is illustrated. In particular, the framework is used to expand the Krotov-Hopfield learning rule to standard convolutional neural networks without sacrificing accuracy compared to end-to-end backpropagation. The source code is available at https://github.com/Joxis/pytorch-hebbian.
翻译:最近,根据Hebb认为改变突触功效仅取决于前和后后期神经系统的活动这一想法,在不受监督的当地学习最近显示出了作为反演化的替代培训机制的潜力。不幸的是,Hebbian的学习仍然是实验性的,很少将其纳入标准的深层次学习框架。在这项工作中,我们调查了Hebbian在标准深层次学习工作流程背景下学习的潜力。为此,提议了一个对现有深层学习管道中的地方学习规则进行彻底和系统评价的框架。利用这个框架,说明了Hebbian学习的地物提取器在图像分类方面的潜力。特别是,该框架被用来将Krotov-Hopfield学习规则扩大到标准的革命性神经网络,而没有牺牲与端到端的反演化的准确性。源代码可在https://github.com/Joxis/ptorch-hebian查阅。