Recently, unsupervised local learning, based on Hebb's idea that change in synaptic efficacy depends on the activity of the pre- and postsynaptic neuron only, has shown potential as an alternative training mechanism to backpropagation. Unfortunately, Hebbian learning remains experimental and rarely makes it way into standard deep learning frameworks. In this work, we investigate the potential of Hebbian learning in the context of standard deep learning workflows. To this end, a framework for thorough and systematic evaluation of local learning rules in existing deep learning pipelines is proposed. Using this framework, the potential of Hebbian learned feature extractors for image classification is illustrated. In particular, the framework is used to expand the Krotov-Hopfield learning rule to standard convolutional neural networks without sacrificing accuracy compared to end-to-end backpropagation. The source code is available at https://github.com/Joxis/pytorch-hebbian.


翻译:最近,根据Hebb认为改变突触功效仅取决于前和后后期神经系统的活动这一想法,在不受监督的当地学习最近显示出了作为反演化的替代培训机制的潜力。不幸的是,Hebbian的学习仍然是实验性的,很少将其纳入标准的深层次学习框架。在这项工作中,我们调查了Hebbian在标准深层次学习工作流程背景下学习的潜力。为此,提议了一个对现有深层学习管道中的地方学习规则进行彻底和系统评价的框架。利用这个框架,说明了Hebbian学习的地物提取器在图像分类方面的潜力。特别是,该框架被用来将Krotov-Hopfield学习规则扩大到标准的革命性神经网络,而没有牺牲与端到端的反演化的准确性。源代码可在https://github.com/Joxis/ptorch-hebian查阅。

0
下载
关闭预览

相关内容

元学习(meta learning) 最新进展综述论文
专知会员服务
278+阅读 · 2020年5月8日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
《动手学深度学习》(Dive into Deep Learning)PyTorch实现
专知会员服务
119+阅读 · 2019年12月31日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
开源书:PyTorch深度学习起步
专知会员服务
50+阅读 · 2019年10月11日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
深度学习(deep learning)发展史
机器学习算法与Python学习
12+阅读 · 2018年3月19日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
7+阅读 · 2018年12月26日
Arxiv
6+阅读 · 2018年12月10日
Few Shot Learning with Simplex
Arxiv
5+阅读 · 2018年7月27日
A Multi-Objective Deep Reinforcement Learning Framework
VIP会员
相关VIP内容
元学习(meta learning) 最新进展综述论文
专知会员服务
278+阅读 · 2020年5月8日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
《动手学深度学习》(Dive into Deep Learning)PyTorch实现
专知会员服务
119+阅读 · 2019年12月31日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
开源书:PyTorch深度学习起步
专知会员服务
50+阅读 · 2019年10月11日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
深度学习(deep learning)发展史
机器学习算法与Python学习
12+阅读 · 2018年3月19日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员