We propose a permutation-based method for testing a large collection of hypotheses simultaneously. Our method provides lower bounds for the number of true discoveries in any selected subset of hypotheses. These bounds are simultaneously valid with high confidence. The methodology is particularly useful in functional Magnetic Resonance Imaging cluster analysis, where it provides a confidence statement on the percentage of truly activated voxels within clusters of voxels, avoiding the well-known spatial specificity paradox. We offer a user-friendly tool to estimate the percentage of true discoveries for each cluster while controlling the family-wise error rate for multiple testing and taking into account that the cluster was chosen in a data-driven way. The method adapts to the spatial correlation structure that characterizes functional Magnetic Resonance Imaging data, gaining power over parametric approaches.
翻译:我们建议一种基于变位法的方法,用于同时测试大量的假设。 我们的方法为任何特定子假设中真实发现的数量提供了较低的界限。 这些界限同时具有很高的信心。 这种方法在功能性磁共振成像群分析中特别有用, 它提供了一份信任声明, 说明在自愿氧化物群中真正活化的氧化物的百分比, 避免众所周知的空间特殊性悖论。 我们提供了一个方便用户的工具, 用以估计每个组群的真实发现的百分比, 同时控制多组群的多类测试的家庭错误率, 同时考虑到组群是以数据驱动的方式选择的。 该方法适应了功能性磁共振成数据所特有的空间相关结构, 获得了超度参数方法的能量 。