We model longitudinal macular thickness measurements to monitor the course of glaucoma and prevent vision loss due to disease progression. The macular thickness varies over a 6$\times$6 grid of locations on the retina with additional variability arising from the imaging process at each visit. Currently, ophthalmologists estimate slopes using repeated simple linear regression for each subject and location. To estimate slopes more precisely, we develop a novel Bayesian hierarchical model for multiple subjects with spatially varying population-level and subject-level coefficients, borrowing information over subjects and measurement locations. We augment the model with visit effects to account for observed spatially correlated visit-specific errors. We model spatially varying (a) intercepts, (b) slopes, and (c) log residual standard deviations (SD) with multivariate Gaussian process priors with Mat\'ern cross-covariance functions. Each marginal process assumes an exponential kernel with its own SD and spatial correlation matrix. We develop our models for and apply them to data from the Advanced Glaucoma Progression Study. We show that including visit effects in the model reduces error in predicting future thickness measurements and greatly improves model fit.
翻译:我们为监测青光眼的走向和防止由于病变而导致的视力丧失,制作了纵向肌肉厚度测量模型,以监测青光谱过程,防止由于病变而导致的视网膜上的视网膜位置网格6美元差异6美元,每次访问的成像过程产生更多变异。目前,眼科医生使用对每个对象和地点的重复简单线性回归来估计斜坡。为了更准确地估计斜坡度,我们为具有不同空间人口水平和主题水平系数的多个对象开发了新型贝叶斯等级模型,在对象和测量位置上借用了信息。我们用访问效果来补充模型,以说明观察到的空间相关访问差错。我们用空间模型来模拟(a)拦截、(b)斜度和(c)日志残留标准偏差(SD),同时使用Mat\'erc的跨共变函数来计算斜度。每个边际进程都用其自身的SDD和空间相关性矩阵进行指数内核内核。我们开发了我们的模型,并将其用于高级Glaocoma进步研究中的数据。我们展示了访问效果,包括模型在预测未来深度的精确度方面大大降低误差。我们展示了模型。</s>