We extend the model-free Data-Driven computing paradigm to solids and structures that are stochastic due to intrinsic randomness in the material behavior. The behavior of such materials is characterized by a likelihood measure instead of a constitutive relation. We specifically assume that the material likelihood measure is known only through an empirical point-data set in material or phase space. The state of the solid or structure is additionally subject to compatibility and equilibrium constraints. The problem is then to infer the likelihood of a given structural outcome of interest. In this work, we present a Data-Driven method of inference that determines likelihoods of outcomes from the empirical material data and that requires no material or prior modeling. In particular, the computation of expectations is reduced to explicit sums over local material data sets and to quadratures over admissible states, i. e., states satisfying compatibility and equilibrium. The complexity of the material data-set sums is linear in the number of data points and in the number of members in the structure. Efficient population annealing procedures and fast search algorithms for accelerating the calculations are presented. The scope, cost and convergence properties of the method are assessed with the aid selected applications and benchmark tests.


翻译:我们将无模型数据驱动计算模式扩大到因物质行为本身随机性而具有随机性的固态和结构。这些材料的行为具有一种可能性衡量的特征,而不是构成关系。我们特别假定,物质概率计量仅通过材料或阶段空间的经验点数据集而为人所知。固态或结构的状况还受兼容性和平衡性的限制。然后的问题是推导产生某种感兴趣的结构结果的可能性。在这项工作中,我们提出了一个数据生成推论方法,确定实验材料数据的结果的可能性,而不需要材料或先前的模型。特别是,对预期的计算将降低到对当地材料数据集的明确数字,并对可接受状态进行等量的等量,即符合兼容性和平衡性。材料数据集的复杂程度是数据点数量和结构中成员数量的线性。为加速计算,我们介绍了高效的人口内嵌程序和快速搜索算法。方法的范围、成本和趋同性与选择的应用基准和测试进行了评估。该方法的范围、成本和趋同性都与选定的援助基准进行了评估。

0
下载
关闭预览

相关内容

专知会员服务
50+阅读 · 2020年12月14日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2022年12月16日
Arxiv
0+阅读 · 2022年12月14日
Arxiv
0+阅读 · 2022年12月14日
VIP会员
相关VIP内容
专知会员服务
50+阅读 · 2020年12月14日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员