We propose a counterfactual approach to train ``causality-aware" predictive models that are able to leverage causal information in static anticausal machine learning tasks (i.e., prediction tasks where the outcome influences the features). In applications plagued by confounding, the approach can be used to generate predictions that are free from the influence of observed confounders. In applications involving observed mediators, the approach can be used to generate predictions that only capture the direct or the indirect causal influences. Mechanistically, we train supervised learners on (counterfactually) simulated features which retain only the associations generated by the causal relations of interest. We focus on linear models, where analytical results connecting covariances, causal effects, and prediction mean squared errors are readily available. Quite importantly, we show that our approach does not require knowledge of the full causal graph. It suffices to know which variables represent potential confounders and/or mediators. We discuss the stability of the method with respect to dataset shifts generated by selection biases and validate the approach using synthetic data experiments.


翻译:我们提出一种反事实的方法来培训“因果觉悟”预测模型,这种模型能够将因果关系信息用于静态非对学机器学习任务(即结果影响特性的预测任务)中。 在受到混乱困扰的应用中,该方法可用于产生不受观察到的混淆者影响的预测。在涉及观察调解人的应用程序中,该方法可用于生成只能捕捉直接或间接因果关系影响的预测。在机械上,我们对受监督的学习者进行了模拟特征的培训,这种模拟特征只保留了因因果关系而产生的关联。我们侧重于线性模型,在这些模型中,可以随时获得分析结果,将共变、因果效应和预测平均正方形错误联系起来。非常重要的是,我们表明,我们的方法并不需要了解全部因果关系图的知识。我们只需知道哪些变量代表潜在的因果影响和/或间接因果关系。我们讨论的是选择偏差所生成的数据集变化方法的稳定性,并利用合成数据实验来验证方法。

0
下载
关闭预览

相关内容

机器学习(Machine Learning)是一个研究计算学习方法的国际论坛。该杂志发表文章,报告广泛的学习方法应用于各种学习问题的实质性结果。该杂志的特色论文描述研究的问题和方法,应用研究和研究方法的问题。有关学习问题或方法的论文通过实证研究、理论分析或与心理现象的比较提供了坚实的支持。应用论文展示了如何应用学习方法来解决重要的应用问题。研究方法论文改进了机器学习的研究方法。所有的论文都以其他研究人员可以验证或复制的方式描述了支持证据。论文还详细说明了学习的组成部分,并讨论了关于知识表示和性能任务的假设。 官网地址:http://dblp.uni-trier.de/db/journals/ml/
【干货书】机器学习速查手册,135页pdf
专知会员服务
126+阅读 · 2020年11月20日
可解释强化学习,Explainable Reinforcement Learning: A Survey
专知会员服务
130+阅读 · 2020年5月14日
因果图,Causal Graphs,52页ppt
专知会员服务
248+阅读 · 2020年4月19日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
31+阅读 · 2019年10月17日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
已删除
将门创投
5+阅读 · 2019年4月29日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
Arxiv
0+阅读 · 2021年1月18日
Arxiv
3+阅读 · 2018年10月5日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
已删除
将门创投
5+阅读 · 2019年4月29日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
Top
微信扫码咨询专知VIP会员