Bayesian transfer learning (BTL) is defined in this paper as the task of conditioning a target probability distribution on a transferred source distribution. The target globally models the interaction between the source and target, and conditions on a probabilistic data predictor made available by an independent local source modeller. Fully probabilistic design is adopted to solve this optimal decision-making problem in the target. By successfully transferring higher moments of the source, the target can reject unreliable source knowledge (i.e. it achieves robust transfer). This dual-modeller framework means that the source's local processing of raw data into a transferred predictive distribution -- with compressive possibilities -- is enriched by (the possible expertise of) the local source model. In addition, the introduction of the global target modeller allows correlation between the source and target tasks -- if known to the target -- to be accounted for. Important consequences emerge. Firstly, the new scheme attains the performance of fully modelled (i.e. conventional) multitask learning schemes in (those rare) cases where target model misspecification is avoided. Secondly, and more importantly, the new dual-modeller framework is robust to the model misspecification that undermines conventional multitask learning. We thoroughly explore these issues in the key context of interacting Gaussian process regression tasks. Experimental evidence from both synthetic and real data settings validates our technical findings: that the proposed BTL framework enjoys robustness in transfer while also being robust to model misspecification.


翻译:本文对巴耶斯转移学习( BTL) 的定义是: 将目标概率分布设定在转移源分布上。 目标全球模型模拟来源和目标之间的相互作用, 以及由独立的本地源建模者提供的概率数据预测器的条件。 采用了完全的概率设计, 以解决目标中的最佳决策问题。 通过成功传输源的较高时刻, 目标可以拒绝不可靠的源知识( 即它实现稳健的转移) 。 这个双重模型框架意味着源对原始数据进行本地处理, 将其转化为可转移的预测分布( 具有压缩可能性的), 由( 可能具备的) 本地源模式模型模型模型进行补充。 此外, 引入全球目标模型管理员可以让源和目标任务 -- -- 如果知道目标的话 -- 发生重要后果。 首先, 新的计划可以达到完全模拟( 常规的) 多重任务学习计划的业绩, 在( 这种罕见的) 案例中, 避免了目标模型的具体分类。 其次, 更重要的是, 新的双重模型化的模型模型框架的正确性框架, 将彻底地破坏着模型的模型化的模型化的模型,, 。

0
下载
关闭预览

相关内容

强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
carla 学习笔记
CreateAMind
9+阅读 · 2018年2月7日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Arxiv
0+阅读 · 2021年3月10日
A Comprehensive Survey on Transfer Learning
Arxiv
121+阅读 · 2019年11月7日
Meta-Transfer Learning for Few-Shot Learning
Arxiv
4+阅读 · 2019年4月9日
Residual Policy Learning
Arxiv
4+阅读 · 2018年12月15日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
carla 学习笔记
CreateAMind
9+阅读 · 2018年2月7日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
相关论文
Arxiv
0+阅读 · 2021年3月10日
A Comprehensive Survey on Transfer Learning
Arxiv
121+阅读 · 2019年11月7日
Meta-Transfer Learning for Few-Shot Learning
Arxiv
4+阅读 · 2019年4月9日
Residual Policy Learning
Arxiv
4+阅读 · 2018年12月15日
Top
微信扫码咨询专知VIP会员