Previous feature alignment methods in Unsupervised domain adaptation(UDA) mostly only align global features without considering the mismatch between class-wise features. In this work, we propose a new coarse-to-fine feature alignment method using contrastive learning called CFContra. It draws class-wise features closer than coarse feature alignment or class-wise feature alignment only, therefore improves the model's performance to a great extent. We build it upon one of the most effective methods of UDA called entropy minimization to further improve performance. In particular, to prevent excessive memory occupation when applying contrastive loss in semantic segmentation, we devise a new way to build and update the memory bank. In this way, we make the algorithm more efficient and viable with limited memory. Extensive experiments show the effectiveness of our method and model trained on the GTA5 to Cityscapes dataset has boost mIOU by 3.5 compared to the MinEnt algorithm. Our code will be publicly available.


翻译:在未受监督的域适应(UDA) 中, 先前的特性校正方法大多只是调整全球特性, 而不考虑等级特性之间的不匹配。 在这项工作中, 我们提出一种新的粗对齐特性校正方法, 使用对比性学习方法, 称为 CFContra 。 它绘制的类比特征校正比粗化校正或类比对称更近一些, 因此可以大大改善模型的性能。 我们把它建在UDA最有效的方法之一上, 叫做 最小化, 以进一步提高性能。 特别是, 在使用语义分隔法的对比性损失时, 我们想出一个新的构建和更新记忆库的方法。 这样, 我们用有限的内存来使算法更高效、更可行。 广泛的实验显示我们在 GTA5 到 Cityscovers Data Set 上训练的方法和模型的有效性, 与 Minnt 算法相比, 我们的代码将会被公开使用, 。

0
下载
关闭预览

相关内容

【Google】监督对比学习,Supervised Contrastive Learning
专知会员服务
74+阅读 · 2020年4月24日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
Uber AI NeurIPS 2019《元学习meta-learning》教程,附92页PPT下载
专知会员服务
112+阅读 · 2019年12月13日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员