Constraint satisfaction (CSP) and structure isomorphism (SI) are among the most well-studied computational problems in Computer Science. While neither problem is thought to be in $\texttt{PTIME},$ much work is done on $\texttt{PTIME}$ approximations to both problems. Two such historically important approximations are the $k$-consistency algorithm for CSP and the $k$-Weisfeiler-Leman algorithm for SI, both of which are based on propagating local partial solutions. The limitations of these algorithms are well-known; $k$-consistency can solve precisely those CSPs of bounded width and $k$-Weisfeiler-Leman can only distinguish structures which differ on properties definable in $C^k$. In this paper, we introduce a novel sheaf-theoretic approach to CSP and SI and their approximations. We show that both problems can be viewed as deciding the existence of global sections of presheaves, $\mathcal{H}_k(A,B)$ and $\mathcal{I}_k(A,B)$ and that the success of the $k$-consistency and $k$-Weisfeiler-Leman algorithms correspond to the existence of certain efficiently computable subpresheaves of these. Furthermore, building on work of Abramsky and others in quantum foundations, we show how to use \v{C}ech cohomology in $\mathcal{H}_k(A,B)$ and $\mathcal{I}_k(A,B)$ to detect obstructions to the existence of the desired global sections and derive new efficient cohomological algorithms extending $k$-consistency and $k$-Weisfeiler-Leman. We show that cohomological $k$-consistency can solve systems of equations over all finite rings and that cohomological Weisfeiler-Leman can distinguish positive and negative instances of the Cai-F\"urer-Immerman property over several important classes of structures.


翻译:在计算机科学中, 固定满意度( CSP) 和结构的形态化( SI) 是最受研究的计算问题。 虽然据认为这两个问题都不在 $\ textt{ PTIME} 中, 但对于这两个问题都做了大量的工作 $\ textt{ PTIME} 近似 。 有两个历史中的重要近似点是 CSP 和 SI 的美元- Weisfeiler- Leman 算法( SI ), 两者都是基于 传播本地部分解决方案。 这些算法的局限性是众所周知的; 美元- 美元计算法的局限性可以准确地解决那些有约束宽度的 CSP 和 $- Weisfol- Leman 这样的结构。 在本文中, 我们对 CSP 和 SI 及其近距离化的 方法采用了一种新奇异的理论性方法。 这两种问题都可以被看成决定 是否存在全球预产值、 美元- mathalalal $- 美元- 和 美元- cal- democial- cocial- deal- deal- ex- 和 ex- ex- ex- excial- 和 ex- ex- ex- ex- ex- ex- ex- ex- 和 ex- ex- ex- ex- ex- ex- a- 和 a- a- ex- 和 a- 和 a- i- a- i- 和 a- ex- 和 a- ex- s- i- 和 i- i- 和 a- i- 和 a- i- s- i- 和 a- 和 a- i- 和 a- a- 和 和 和 和 和 i- 和 和 a- i- 和 a- 和 和 和 和 i- s- i- s- 和 和 和 i- s- 的 和 和 和 i- s- i- i- i- i- i- s- s- i- 和 a- i- i-

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
专知会员服务
159+阅读 · 2020年1月16日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium5
中国图象图形学学会CSIG
1+阅读 · 2021年11月11日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年8月18日
Arxiv
0+阅读 · 2022年8月18日
VIP会员
相关VIP内容
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
专知会员服务
159+阅读 · 2020年1月16日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
相关资讯
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium5
中国图象图形学学会CSIG
1+阅读 · 2021年11月11日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员