We propose a quality-based optimization strategy to reduce the total number of degrees of freedom associated to a discrete problem defined over a polygonal tessellation with the Virtual Element Method. The presented Quality Agglomeration algorithm relies only on the geometrical properties of the problem polygonal mesh, agglomerating groups of neighboring elements. We test this approach in the context of fractured porous media, in which the generation of a global conforming mesh on a Discrete Fracture Network leads to a considerable number of unknowns, due to the presence of highly complex geometries and the significant size of the computational domains. We show the efficiency and the robustness of our approach, applied independently on each fracture for different network configurations, exploiting the flexibility of the Virtual Element Method in handling general polygonal elements.
翻译:我们提出了一个基于质量的优化战略,以降低在与虚拟元素法的多边形交融中界定的离散问题相关的自由总度。推出的质量聚合算法仅依赖于问题多边形网格的几何特性,即相邻元素的聚积组。我们用支离破碎的多孔介质测试这一方法,在这个介质中,由于存在高度复杂的地貌和计算区域的巨大规模,生成一个与分解断裂网络一致的全球网格导致大量未知现象。我们显示了我们方法的效率和稳健性,对不同网络配置的每一次断裂独立应用,利用虚拟元素方法在处理一般多边形元素方面的灵活性。