Inverse problems constrained by partial differential equations (PDEs) play a critical role in model development and calibration. In many applications, there are multiple uncertain parameters in a model that must be estimated. However, high dimensionality of the parameters and computational complexity of the PDE solves make such problems challenging. A common approach is to reduce the dimension by fixing some parameters (which we will call auxiliary parameters) to a best estimate and use techniques from PDE-constrained optimization to estimate the other parameters. In this article, hyper-differential sensitivity analysis (HDSA) is used to assess the sensitivity of the solution of the PDE-constrained optimization problem to changes in the auxiliary parameters. Foundational assumptions for HDSA require satisfaction of the optimality conditions which are not always practically feasible as a result of ill-posedness in the inverse problem. We introduce novel theoretical and computational approaches to justify and enable HDSA for ill-posed inverse problems by projecting the sensitivities on likelihood informed subspaces and defining a posteriori updates. Our proposed framework is demonstrated on a nonlinear multi-physics inverse problem motivated by estimation of spatially heterogenous material properties in the presence of spatially distributed parametric modeling uncertainties.
翻译:由部分差异方程式(PDEs)限制的反面问题在模型开发和校准中起着关键作用。在许多应用中,模型中有许多必须估计的不确定参数。然而,PDE解决方案参数的高度维度和计算复杂性使这些问题具有挑战性。一个共同的方法是通过确定一些参数(我们称之为辅助参数),以最佳估计和使用PDE受限制的优化方法,来估计其他参数,从而降低这一维度。在本条中,超差异敏感度分析(HDSA)被用来评估PDE受限制的优化问题解决方案对辅助参数变化的敏感性。HDSA的基础假设要求满足最佳性条件,由于对反面问题的不正确反应,这些条件并非始终实际可行。我们采用了新的理论和计算方法,通过预测对了解的次空间空间空间空间空间空间空间的敏感度和后继更新,使HDSA能够应对不正确的反问题。我们提议的框架展示在空间偏差空间偏差性定位材料存在的非线性多物理偏向性问题上。