Contrastive Learning (CL) has emerged as a dominant technique for unsupervised representation learning which embeds augmented versions of the anchor close to each other (positive samples) and pushes the embeddings of other samples (negatives) apart. As revealed in recent studies, CL can benefit from hard negatives (negatives that are most similar to the anchor). However, we observe limited benefits when we adopt existing hard negative mining techniques of other domains in Graph Contrastive Learning (GCL). We perform both experimental and theoretical analysis on this phenomenon and find it can be attributed to the message passing of Graph Neural Networks (GNNs). Unlike CL in other domains, most hard negatives are potentially false negatives (negatives that share the same class with the anchor) if they are selected merely according to the similarities between anchor and themselves, which will undesirably push away the samples of the same class. To remedy this deficiency, we propose an effective method, dubbed \textbf{ProGCL}, to estimate the probability of a negative being true one, which constitutes a more suitable measure for negatives' hardness together with similarity. Additionally, we devise two schemes (i.e., \textbf{ProGCL-weight} and \textbf{ProGCL-mix}) to boost the performance of GCL. Extensive experiments demonstrate that ProGCL brings notable and consistent improvements over base GCL methods and yields multiple state-of-the-art results on several unsupervised benchmarks or even exceeds the performance of supervised ones. Also, ProGCL is readily pluggable into various negatives-based GCL methods for performance improvement. We release the code at \textcolor{magenta}{\url{https://github.com/junxia97/ProGCL}}.


翻译:对比学习(CL)已成为一种不受监督的演示学习的主要技术,这种学习将锁定的扩大版本嵌入彼此之间(正样),并将其他样本(负样)的嵌入分开。正如最近的研究所揭示的那样,CL可以受益于硬负值(最接近于锚的负值)。然而,当我们在图形对比学习(GCL)中采用其它领域现有的硬负采矿技术时,我们观察到的效益有限。我们对这一现象进行实验和理论分析,发现这可以归因于图形神经网络(GNNS)传递信息。与CL不同的是,大多数硬负值可能是虚假的负值(负数与其他样本(负数)一样),如果它们只是根据固定和自身之间的相似性能来选择,这将不值得注意地推走同级的GC的样本。为了弥补这一缺陷,我们提出了一种有效的方法,被调出为平价/textfralf{ProGCL}的改进度可归因于图象性变异的概率, 也代表了正反性L} 性性性性性能的精确性能和性能的推演化性能,也比正基值。

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Max-Margin Contrastive Learning
Arxiv
18+阅读 · 2021年12月21日
Arxiv
16+阅读 · 2021年7月18日
Arxiv
56+阅读 · 2021年5月3日
Arxiv
20+阅读 · 2020年6月8日
VIP会员
相关VIP内容
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
相关资讯
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员