FPN is a common component used in object detectors, it supplements multi-scale information by adjacent level features interpolation and summation. However, due to the existence of nonlinear operations and the convolutional layers with different output dimensions, the relationship between different levels is much more complex, the pixel-wise summation is not an efficient approach. In this paper, we first analyze the design defects from pixel level and feature map level. Then, we design a novel parameter-free feature pyramid networks named Dual Refinement Feature Pyramid Networks (DRFPN) for the problems. Specifically, DRFPN consists of two modules: Spatial Refinement Block (SRB) and Channel Refinement Block (CRB). SRB learns the location and content of sampling points based on contextual information between adjacent levels. CRB learns an adaptive channel merging method based on attention mechanism. Our proposed DRFPN can be easily plugged into existing FPN-based models. Without bells and whistles, for two-stage detectors, our model outperforms different FPN-based counterparts by 1.6 to 2.2 AP on the COCO detection benchmark, and 1.5 to 1.9 AP on the COCO segmentation benchmark. For one-stage detectors, DRFPN improves anchor-based RetinaNet by 1.9 AP and anchor-free FCOS by 1.3 AP when using ResNet50 as backbone. Extensive experiments verifies the robustness and generalization ability of DRFPN. The code will be made publicly available.
翻译:FPN是物体探测器的一个共同组成部分,它通过相邻水平特征的内插和加和来补充多级信息,然而,由于存在非线性操作和具有不同产出层面的进化层,不同级别之间的关系更加复杂得多,像素相加并不是一种有效的方法。在本文件中,我们首先分析像素级和特征地图级的设计缺陷。然后,我们设计了一个新型的无参数特征金字塔网络,名为双精性精度网状网状网状网络(DRFPN),用于解决问题。具体地说,DFPN由两个模块组成:空间精炼层和具有不同产出层面的进化层。由于存在非线性操作和进化层层层,不同层次之间的关系更为复杂得多,像素相近的相和相近相近相近相近相近的相近点的相近点的位置和内容。 我们提议的DRFPPNPN可以很容易地插入现有的FPN模式。对于两阶段探测器来说,我们的FPNP-C模型比以不同的FPN为不同的对应单位,由1.6至2.2的APCO标准级标准级标准标准标准标准标准标准标准标准标准标准标准标准标准基准,将AB-1.5的AS级BRBRBRBRBRBS-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-CRBS-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-BRBRBRBS-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-BAR-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C