Standard weighted multiple testing methods require the weights to deterministically add up to the number of hypotheses being tested (equivalently, the average weight must be unity). We show that this normalization is not required when the weights are not constants, but are themselves e-values obtained from independent data. This could result in a massive increase in power, especially if the non-null hypotheses have e-values much larger than one. More broadly, we study how to combine an e-value and a p-value, and design multiple testing procedures where both e-values and p-values are available for every hypothesis (or one of them is available for an implied hypothesis). For false discovery rate (FDR) control, analogous to the Benjamini-Hochberg procedure with p-values (p-BH) and the recent e-BH procedure for e-values, we propose two new procedures: ep-BH and pe-BH, which have valid FDR guarantee under different dependence assumptions. These procedures are designed based on several admissible combining functions for p/e-values, which also yields methods for family-wise error rate control. We demonstrate the practical power benefits with a case study with RNA-Seq and microarray data. We also collect several miscellaneous results, such as a tiny but uniform improvement of e-BH, a soft-rank permutation e-value, and the use of e-values as masks in interactive multiple testing.


翻译:标准加权多重测试方法要求将加权权重与正在测试的假设数量相加(相当于平均重量必须统一)。我们表明,当重量不是常数时,并不需要这种正常化,而本身是独立数据获得的电子值。这可能导致权力的大幅增长,特别是如果非nu值假设的电子价值比电子价值大得多。更广义地说,我们研究如何将电子价值和 p-价值结合起来,并设计多种互动性测试程序,其中每种假设(或其中一种为隐含假设提供)都有电子价值和 p-价值。对于虚假发现率(FDR)控制,类似于带有p-值的Benjani-Hochberg程序和最近电子价值的电子-BH程序,我们提议两个新程序:e-BH和p-BH,它们在不同依赖性假设下具有有效的 FDRlumi值保证。这些程序的设计依据了P/e-e-val值的若干可接受的合并功能(或其中一种为隐含假设提供的一种)。对于假发现率(FDRDR)的发现率控制方法,例如对家庭-H的精确度数据率率率的测试,我们以若干次的微数值进行模拟测试。

0
下载
关闭预览

相关内容

专知会员服务
50+阅读 · 2020年12月14日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
76+阅读 · 2020年7月26日
强化学习最新教程,17页pdf
专知会员服务
168+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
90+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
99+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
26+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年11月15日
Arxiv
0+阅读 · 2022年11月14日
VIP会员
相关VIP内容
专知会员服务
50+阅读 · 2020年12月14日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
76+阅读 · 2020年7月26日
强化学习最新教程,17页pdf
专知会员服务
168+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
90+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
99+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
26+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员