This paper proposes a new parent selection method for reducing the effect of evaluation time bias in asynchronous parallel evolutionary algorithms (APEAs). APEAs have the advantage of increasing computational efficiency even when the evaluation times of solutions differ. However, APEAs have a problem that their search direction is biased toward the search region with a short evaluation time. The proposed parent selection method considers the search frequency of solutions to reduce such an adverse influence of APEAs while maintaining their computational efficiency. We conduct experiments on toy problems that reproduce the evaluation time bias on multi-objective optimization problems to investigate the effectiveness of the proposed method. The experiments use NSGA-III, a well-known multi-objective evolutionary algorithm. In the experiments, we compare the proposed method with the synchronous and asynchronous methods. The experimental results reveal that the proposed method can reduce the effect of the evaluation time bias while reducing the computing time of the parallel NSGA-III.
翻译:本文提出了一个新的家长选择方法,以减少评价时间偏差在非同步平行进化算法中的影响。APEA的优点是提高计算效率,即使解决办法的评价时间不同。但是,APEA的搜索方向偏向搜索区域,而评价时间较短。拟议的家长选择方法考虑寻找解决办法的频率,以减少APEA的这种不利影响,同时保持其计算效率。我们实验的是玩具问题,它复制了对多目标优化算法问题的评价时间偏差,以调查拟议方法的有效性。实验使用了众所周知的多目标进化算法NSGA-III。在实验中,我们比较了拟议的方法与同步和不同步的方法。实验结果表明,拟议的方法可以减少评价时间偏差的影响,同时减少并行的NSGA-III的计算时间。