Microstructures are attracting academic and industrial interests with the rapid development of additive manufacturing. The numerical homogenization method has been well studied for analyzing mechanical behaviors of microstructures; however, it is too time-consuming to be applied to online computing or applications requiring high-frequency calling, e.g., topology optimization. Data-driven homogenization methods emerge as a more efficient choice but limit the microstructures into a cubic shape, which are infeasible to the periodic microstructures with a more general shape, e.g., parallelepiped. This paper introduces a fine-designed 3D convolutional neural network (CNN) for fast homogenization of parallel-shaped microstructures, named PH-Net. Superior to existing data-driven methods, PH-Net predicts the local displacements of microstructures under specified macroscope strains instead of direct homogeneous material, motivating us to present a label-free loss function based on minimal potential energy. For dataset construction, we introduce a shape-material transformation and voxel-material tensor to encode microstructure type,base material and boundary shape together as the input of PH-Net, such that it is CNN-friendly and enhances PH-Net on generalization in terms of microstructure type, base material, and boundary shape. PH-Net predicts homogenized properties with hundreds of acceleration compared to the numerical homogenization method and even supports online computing. Moreover, it does not require a labeled dataset and thus is much faster than current deep learning methods in training processing. Benefiting from predicting local displacement, PH-Net provides both homogeneous material properties and microscopic mechanical properties, e.g., strain and stress distribution, yield strength, etc. We design a group of physical experiments and verify the prediction accuracy of PH-Net.


翻译:随着添加剂制造的快速发展,微结构正在吸引学术和工业兴趣。数字同质化方法已经很好地用于分析微结构的机械行为;然而,对于在线计算或需要高频调用的应用(例如,地形优化)来说,这种方法太费时,无法用于在线计算或需要高频调用的应用,例如,地形优化。数据驱动的同质化方法作为一种效率更高的选择出现,但将微结构限制为立方形,这种结构对于具有更广形状的定期微结构来说是不可行的,例如,平行的。本文引入了一种精心设计的3D变速神经网络(CNN),用于快速将平行型微结构(名为PH-Net)快速同质化;对于现有的数据驱动方法而言,PH-Net预测方法预测在指定的宏观镜状下对本地结构的迁移,而不是直接的同质材料,从而激励我们展示一种基于最小潜在压力的无标签损失功能。对于数据元件结构的构建,我们引入了一种形状-材料变异和毒理材料处理,将微变变的微网络培训从微结构类型、基础材料和边界结构的变现,因此,PH-网络化的基数据结构的计算需要更精确的计算-直观的计算-直观-直观-直观-直观的计算-直观-直观-直观-直观-直观-直观-直观-直观-直观-直观-直观-直观-直观-直观-直观-直观-直观-直观-直观-直观-直观-直观-直观-直观-直观-直观-直观-直观-直观-直观-直观-直观-直观-直观-直观-直观-直观-直观-直观-直观-直观-直观-直观-直观-直观-直观-直观-直观-直观-直观-直观-直观-直观-直观-直观-直观-直观-直观-直观-直观-直观-直观-直观-直观-直观-直观-直观-直观-直观-直观-直观-直观-直观-直观-直观-

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
72+阅读 · 2022年6月28日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
0+阅读 · 2016年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
22+阅读 · 2021年12月2日
Arxiv
27+阅读 · 2020年6月19日
Arxiv
13+阅读 · 2019年11月14日
Arxiv
17+阅读 · 2019年3月28日
VIP会员
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
相关基金
国家自然科学基金
0+阅读 · 2016年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员