Microstructures are attracting academic and industrial interests with the rapid development of additive manufacturing. The numerical homogenization method has been well studied for analyzing mechanical behaviors of microstructures; however, it is too time-consuming to be applied to online computing or applications requiring high-frequency calling, e.g., topology optimization. Data-driven homogenization methods emerge as a more efficient choice but limit the microstructures into a cubic shape, which are infeasible to the periodic microstructures with a more general shape, e.g., parallelepiped. This paper introduces a fine-designed 3D convolutional neural network (CNN) for fast homogenization of parallel-shaped microstructures, named PH-Net. Superior to existing data-driven methods, PH-Net predicts the local displacements of microstructures under specified macroscope strains instead of direct homogeneous material, motivating us to present a label-free loss function based on minimal potential energy. For dataset construction, we introduce a shape-material transformation and voxel-material tensor to encode microstructure type,base material and boundary shape together as the input of PH-Net, such that it is CNN-friendly and enhances PH-Net on generalization in terms of microstructure type, base material, and boundary shape. PH-Net predicts homogenized properties with hundreds of acceleration compared to the numerical homogenization method and even supports online computing. Moreover, it does not require a labeled dataset and thus is much faster than current deep learning methods in training processing. Benefiting from predicting local displacement, PH-Net provides both homogeneous material properties and microscopic mechanical properties, e.g., strain and stress distribution, yield strength, etc. We design a group of physical experiments and verify the prediction accuracy of PH-Net.
翻译:随着添加剂制造的快速发展,微结构正在吸引学术和工业兴趣。数字同质化方法已经很好地用于分析微结构的机械行为;然而,对于在线计算或需要高频调用的应用(例如,地形优化)来说,这种方法太费时,无法用于在线计算或需要高频调用的应用,例如,地形优化。数据驱动的同质化方法作为一种效率更高的选择出现,但将微结构限制为立方形,这种结构对于具有更广形状的定期微结构来说是不可行的,例如,平行的。本文引入了一种精心设计的3D变速神经网络(CNN),用于快速将平行型微结构(名为PH-Net)快速同质化;对于现有的数据驱动方法而言,PH-Net预测方法预测在指定的宏观镜状下对本地结构的迁移,而不是直接的同质材料,从而激励我们展示一种基于最小潜在压力的无标签损失功能。对于数据元件结构的构建,我们引入了一种形状-材料变异和毒理材料处理,将微变变的微网络培训从微结构类型、基础材料和边界结构的变现,因此,PH-网络化的基数据结构的计算需要更精确的计算-直观的计算-直观-直观-直观-直观的计算-直观-直观-直观-直观-直观-直观-直观-直观-直观-直观-直观-直观-直观-直观-直观-直观-直观-直观-直观-直观-直观-直观-直观-直观-直观-直观-直观-直观-直观-直观-直观-直观-直观-直观-直观-直观-直观-直观-直观-直观-直观-直观-直观-直观-直观-直观-直观-直观-直观-直观-直观-直观-直观-直观-直观-直观-直观-直观-直观-直观-直观-直观-直观-直观-直观-直观-直观-直观-直观-直观-直观-直观-直观-直观-直观-