In recent years there has been a push to discover the governing equations dynamical systems directly from measurements of the state, often motivated by systems that are too complex to directly model. Although there has been substantial work put into such a discovery, doing so in the case of large noise has proved challenging. Here we develop an algorithm for Simultaneous Identification and Denoising of a Dynamical System (SIDDS). We infer the noise in the state measurements by requiring that the denoised data satisfies the dynamical system with an equality constraint. This is unlike existing work where the mismatch in the dynamical system is treated as a penalty in the objective. We assume the dynamics is represented in a pre-defined basis and develop a sequential quadratic programming approach to solve the SIDDS problem featuring a direct solution of KKT system with a specialized preconditioner. In addition, we show how we can include sparsity promoting regularization using an iteratively reweighted least squares approach. The resulting algorithm leads to estimates of the dynamical system that approximately achieve the Cram\'er-Rao lower bound and, with sparsity promotion, can correctly identify the sparsity structure for higher levels of noise than existing techniques. Moreover, because SIDDS decouples the data from the evolution of the dynamical system, we show how to modify the problem to accurately identify systems from low sample rate measurements. The inverse problem approach and solution framework used by SIDDS has the potential to be expanded to related problems identifying governing equations from noisy data.


翻译:近些年来,人们一直在推动从国家测量中直接发现治理方程式动态系统,其动机往往是过于复杂的系统,无法直接建模。虽然已经为发现这种发现做了大量工作,但对于大噪音则证明具有挑战性。在这里,我们开发了动态系统(SIDDS)同声识别和消化的算法。我们通过要求脱色数据以平等限制的方式满足动态系统,推断了州测量中的噪音。这不同于现有的工作,即动态系统中的不匹配被视为目标中的一种惩罚。我们假设动态系统在预先确定的基础上进行,并开发了解决SIDDDS问题的连续二次二次二次四重编程程序方法。我们在这里开发了一个具有专门先决条件的KKT系统直接解决方案的算法。此外,我们展示了我们如何通过迭代再量最小平方法的方法将促进规范化。由此产生的算法导致对动态系统进行估算,该动态系统大约达到Cram/'rao较低约束度的平方程式,而且,通过宽度促进,我们假定这些动态的平方程式代表了SDSDS的更精确度结构,因为我们所使用的数据系统比噪音更精确地展示了SDSDSDSDR的系统,从现有的变异度结构,从而可以辨出数据系统更变异度结构,从而显示了现有的变异化到SDF。

0
下载
关闭预览

相关内容

专知会员服务
50+阅读 · 2020年12月14日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
3+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2023年3月3日
Arxiv
0+阅读 · 2023年3月1日
VIP会员
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
3+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员