Among various soft computing approaches for time series forecasting, Fuzzy Cognitive Maps (FCM) have shown remarkable results as a tool to model and analyze the dynamics of complex systems. FCM have similarities to recurrent neural networks and can be classified as a neuro-fuzzy method. In other words, FCMs are a mixture of fuzzy logic, neural network, and expert system aspects, which act as a powerful tool for simulating and studying the dynamic behavior of complex systems. The most interesting features are knowledge interpretability, dynamic characteristics and learning capability. The goal of this survey paper is mainly to present an overview on the most relevant and recent FCM-based time series forecasting models proposed in the literature. In addition, this article considers an introduction on the fundamentals of FCM model and learning methodologies. Also, this survey provides some ideas for future research to enhance the capabilities of FCM in order to cover some challenges in the real-world experiments such as handling non-stationary data and scalability issues. Moreover, equipping FCMs with fast learning algorithms is one of the major concerns in this area.
翻译:在时间序列预报的各种软计算方法中,Fuzzy Cognitive Maps(FCM)显示了显著的成果,作为模拟和分析复杂系统动态的工具,Fuzzy Cognitive Maps(FCM)与经常性神经网络有相似之处,可归类为神经模糊方法,换句话说,FCM是模糊逻辑、神经网络和专家系统方面的混合体,是模拟和研究复杂系统动态行为的有力工具,最令人感兴趣的特征是知识可解释性、动态特征和学习能力。本调查论文的主要目的是概述文献中提议的最相关和最近基于FCMM的时间序列预测模型。此外,本文章还考虑介绍FCM模型和学习方法的基本原理。此外,本调查为未来研究提供了一些想法,以提高FCM的能力,以涵盖实际实验中的一些挑战,如处理非静止数据和可扩缩性问题。此外,为FCMMs配备快速学习算法是这一领域的主要问题之一。