Koopman operators globally linearize nonlinear dynamical systems and their spectral information is a powerful tool for the analysis and decomposition of nonlinear dynamical systems. However, Koopman operators are infinite-dimensional, and computing their spectral information is a considerable challenge. We introduce measure-preserving extended dynamic mode decomposition ($\texttt{mpEDMD}$), the first truncation method whose eigendecomposition converges to the spectral quantities of Koopman operators for general measure-preserving dynamical systems. $\texttt{mpEDMD}$ is a data-driven algorithm based on an orthogonal Procrustes problem that enforces measure-preserving truncations of Koopman operators using a general dictionary of observables. It is flexible and easy to use with any pre-existing DMD-type method, and with different types of data. We prove convergence of $\texttt{mpEDMD}$ for projection-valued and scalar-valued spectral measures, spectra, and Koopman mode decompositions. For the case of delay embedding (Krylov subspaces), our results include the first convergence rates of the approximation of spectral measures as the size of the dictionary increases. We demonstrate $\texttt{mpEDMD}$ on a range of challenging examples, its increased robustness to noise compared with other DMD-type methods, and its ability to capture the energy conservation and cascade of experimental measurements of a turbulent boundary layer flow with Reynolds number $> 6\times 10^4$ and state-space dimension $>10^5$.
翻译:Koopman 操作员全球线性非线性动态系统及其光谱信息全球线性化非线性动态系统及其光谱信息是分析和分解非线性动态系统的有力工具。 然而, Koopman 操作员是无限的, 计算他们的光谱信息是一项相当大的挑战。 我们引入了测量- 保存扩展的动态模式分解( $\ textt{ mpEDMD}$ ) 的扩展性动态模式分解( 美元), 这是第一个分解方法, 其等分解与 Koopman 操作员的光量一致, 用于一般测量- 保存动态系统的光度系统。 $ ( textt{ mpedMDMD} $ ) 。 $ ( textt) 是基于 orthogoaltial Procrustems 问题的由数据驱动的算算算法, 用一般的字典来测量库性保存库普罗曼操作员的光量。 5 其直径性流- 和直径性 美元 度 度 度 度 度 度 度 度 度 度 的比值 度 的比值 度 的比值 的比 。