We study the problem of making calibrated probabilistic forecasts for a binary sequence generated by an adversarial nature. Following the seminal paper of Foster and Vohra (1998), nature is often modeled as an adaptive adversary who sees all activity of the forecaster except the randomization that the forecaster may deploy. A number of papers have proposed randomized forecasting strategies that achieve an $\epsilon$-calibration error rate of $O(1/\sqrt{T})$, which we prove is tight in general. On the other hand, it is well known that it is not possible to be calibrated without randomization, or if nature also sees the forecaster's randomization; in both cases the calibration error could be $\Omega(1)$. Inspired by the equally seminal works on the "power of two choices" and imprecise probability theory, we study a small variant of the standard online calibration problem. The adversary gives the forecaster the option of making two nearby probabilistic forecasts, or equivalently an interval forecast of small width, and the endpoint closest to the revealed outcome is used to judge calibration. This power of two choices, or imprecise forecast, accords the forecaster with significant power -- we show that a faster $\epsilon$-calibration rate of $O(1/T)$ can be achieved even without deploying any randomization.


翻译:我们研究了对敌对性质产生的二进制序列进行校准概率预测的问题。 在Foster 和 Vohra (1998年) 的开创性论文之后,自然常常以适应性对手为模范,他看到预测者的所有活动,但预测者可能部署的随机化除外。一些论文提出了随机化预测战略,以达到美元(1/\sqrt{T})的校准率校准率校准率为O(1/\sqrt{T})美元的标准在线校准率为1美元(我们证明这一般是紧凑的)。另一方面,众所周知,不可能在没有随机化的情况下进行校准,或者自然也看到预报者的随机化;在这两种情况下,校准错误可能是$($)(1)美元。受“两种选择的力量”和不精确的概率理论同样微小的工程的启发,我们研究了标准的在线校准率问题的一个小变体。 敌给预报者提供了两种接近性概率的选项,或相当于小宽度的间隔预报,甚至接近预报结果的终点点也被用来判断“美元”的精确度。 两种预测,我们没有精确度的预测。

0
下载
关闭预览

相关内容

2019年机器学习框架回顾
专知会员服务
35+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2016年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年9月15日
VIP会员
相关VIP内容
2019年机器学习框架回顾
专知会员服务
35+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2016年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员