Deep learning is the essential building block of state-of-the-art person detectors in 2D range data. However, only a few annotated datasets are available for training and testing these deep networks, potentially limiting their performance when deployed in new environments or with different LiDAR models. We propose a method, which uses bounding boxes from an image-based detector (e.g. Faster R-CNN) on a calibrated camera to automatically generate training labels (called pseudo-labels) for 2D LiDAR-based person detectors. Through experiments on the JackRabbot dataset with two detector models, DROW3 and DR-SPAAM, we show that self-supervised detectors, trained or fine-tuned with pseudo-labels, outperform detectors trained only on a different dataset. Combined with robust training techniques, the self-supervised detectors reach a performance close to the ones trained using manual annotations of the target dataset. Our method is an effective way to improve person detectors during deployment without any additional labeling effort, and we release our source code to support relevant robotic applications.
翻译:深层学习是2D范围数据中最先进的人探测器的基本组成部分。然而,只有几个附加说明的数据集可用于培训和测试这些深层网络,在新环境或不同LIDAR模型中部署时可能会限制其性能。我们提出一种方法,在校准相机上使用基于图像的探测器(例如快速R-CNN)的捆绑盒,自动生成2DLIDAR人探测器的培训标签(称为假标签)。通过在JackRabbot数据集上用两种探测器模型(DROW3和DR-SPAM)进行实验,我们展示了自我监督探测器,用伪标签进行训练或微调,超越探测器只接受不同数据集的培训。与强健的培训技术相结合,自我监督探测器的性能接近于使用目标数据集人工说明进行训练的人的性能。我们的方法是在部署期间在没有任何额外标签努力的情况下改进人性探测器的有效方法,我们释放了我们的源代码以支持相关的机器人应用。