Given a graph class~$\mathcal{C}$, the $\mathcal{C}$-blind-treewidth of a graph~$G$ is the smallest integer~$k$ such that~$G$ has a tree-decomposition where every bag whose torso does not belong to~$\mathcal{C}$ has size at most~$k$. In this paper we focus on the class~$\mathcal{B}$ of bipartite graphs and the class~$\mathcal{P}$ of planar graphs together with the odd-minor relation. For each of the two parameters, $\mathcal{B}$-blind-treewidth and ${(\mathcal{B}\cup\mathcal{P})}$-blind-treewidth, we prove an analogue of the celebrated Grid Theorem under the odd-minor relation. As a consequence we obtain FPT-approximation algorithms for both parameters. We then provide FPT-algorithms for \textsc{Maximum Independent Set} on graphs of bounded $\mathcal{B}$-blind-treewidth and \textsc{Maximum Cut} on graphs of bounded ${(\mathcal{B}\cup\mathcal{P})}$-blind-treewidth.


翻译:给定一个图类~$\mathcal{C}$,一个图~$G$ 的 $\mathcal{C}$-盲树宽是指只要~$G$ 有一棵树分解,树分解的每个包袋——不属于~$\mathcal{C}$ 的躯干——都至多有~$k$ 个元素。在本文中,我们关注双分图类~$\mathcal{B}$ 和平面图类~$\mathcal{P}$ 然后结合在奇小子的约束下。对于以上两个参数 $\mathcal{B}$-盲树宽和 ${(\mathcal{B}\cup\mathcal{P})}$-盲树宽,我们证明了在奇小子约束下,奇数行列覆盖定理类似地推论出来。由此我们获得了对于这两个参数的 FPT-近似算法。然后我们提供了对于定界 $\mathcal{B}$-盲树宽的图的最大独立集问题和 对于定界 ${(\mathcal{B}\cup\mathcal{P})}$-盲树宽的图的最大割问题的 FPT-算法。

0
下载
关闭预览

相关内容

专知会员服务
50+阅读 · 2020年12月14日
专知会员服务
161+阅读 · 2020年1月16日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
图机器学习 2.2-2.4 Properties of Networks, Random Graph
图与推荐
10+阅读 · 2020年3月28日
BERT源码分析PART I
AINLP
38+阅读 · 2019年7月12日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
国家自然科学基金
0+阅读 · 2016年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2023年5月25日
VIP会员
相关VIP内容
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
图机器学习 2.2-2.4 Properties of Networks, Random Graph
图与推荐
10+阅读 · 2020年3月28日
BERT源码分析PART I
AINLP
38+阅读 · 2019年7月12日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
相关基金
国家自然科学基金
0+阅读 · 2016年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员