Contrastive learning is widely used for recommendation model learning, where selecting representative and informative negative samples is critical. Existing methods usually focus on centralized data, where abundant and high-quality negative samples are easy to obtain. However, centralized user data storage and exploitation may lead to privacy risks and concerns, while decentralized user data on a single client can be too sparse and biased for accurate contrastive learning. In this paper, we propose a federated contrastive learning method named FedCL for privacy-preserving recommendation, which can exploit high-quality negative samples for effective model training with privacy well protected. We first infer user embeddings from local user data through the local model on each client, and then perturb them with local differential privacy (LDP) before sending them to a central server for hard negative sampling. Since individual user embedding contains heavy noise due to LDP, we propose to cluster user embeddings on the server to mitigate the influence of noise, and the cluster centroids are used to retrieve hard negative samples from the item pool. These hard negative samples are delivered to user clients and mixed with the observed negative samples from local data as well as in-batch negatives constructed from positive samples for federated model training. Extensive experiments on four benchmark datasets show FedCL can empower various recommendation methods in a privacy-preserving way.


翻译:在建议模式学习中,广泛使用反向学习方法,选择具有代表性且信息丰富的负面样本至关重要。现有方法通常侧重于集中数据,因为大量和高质量的负面样本很容易获得。然而,中央用户数据储存和开发可能会导致隐私风险和关切,而分散的单一客户用户数据可能过于稀少,对准确对比学习有偏差。在本文中,我们建议采用名为FedCL的联结对比学习方法,用于隐私保护建议,该方法可以利用高品质的负面样本,进行有效的模型培训,并保护隐私。我们首先从当地用户数据中推断用户通过每个客户的当地模型嵌入,然后用当地差异隐私渗透,然后将其发送到中央服务器进行硬性负面抽样。由于个人用户嵌入一个分散的用户数据可能过于稀少,因此无法准确进行对比学习。我们提议由分组用户嵌入服务器,以减轻噪音的影响,并且使用集式固态机器人从项目集合中检索硬性负面样本。这些硬性负面样本提供给用户客户,并与从当地数据中观察到的负面样本混在一起,然后用当地差异隐私隐私(LDP)隐私定位模型,然后在四度测试中进行反向定位,通过滚式的模型,用,用来展示,通过滚式模型,通过滚式模型,通过滚式模型,通过滚式的模型,用,用,通过滚式模型,从滚式模型,用反式模型,从滚式模型制,用,用,用,用,用,用,用反式模型,从滚式模型,从滚式模型,用,用,用,用,用,用,用,用,制制制制制制制制制制制制制制制制制制制制制制制制制式制制制制制制制制制制制制制制制制制制制制制制制制制制制制制制制制制制制制制,制,制,制,制,制,制制式制制制制制制制制制制制式制制制制式制式制式制制制制制制制制制制制制制制制制制制制制制式制制制制制制制制制制制制制制制制制制制制制制制制制制制制制制制制制制制制制制制制

0
下载
关闭预览

相关内容

专知会员服务
38+阅读 · 2020年9月6日
专知会员服务
59+阅读 · 2020年3月19日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
168+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
Call for Nominations: 2022 Multimedia Prize Paper Award
CCF多媒体专委会
0+阅读 · 2022年2月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
Multi-Task Learning的几篇综述文章
深度学习自然语言处理
15+阅读 · 2020年6月15日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
LibRec 精选:推荐系统的常用数据集
LibRec智能推荐
17+阅读 · 2019年2月15日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Hierarchical Federated Learning with Privacy
Arxiv
0+阅读 · 2022年6月10日
Arxiv
0+阅读 · 2022年6月10日
Arxiv
0+阅读 · 2022年6月8日
Arxiv
0+阅读 · 2022年6月7日
VIP会员
相关VIP内容
专知会员服务
38+阅读 · 2020年9月6日
专知会员服务
59+阅读 · 2020年3月19日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
168+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
Call for Nominations: 2022 Multimedia Prize Paper Award
CCF多媒体专委会
0+阅读 · 2022年2月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
Multi-Task Learning的几篇综述文章
深度学习自然语言处理
15+阅读 · 2020年6月15日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
LibRec 精选:推荐系统的常用数据集
LibRec智能推荐
17+阅读 · 2019年2月15日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
相关基金
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员