In this paper, we propose a novel co-learning framework (CoSSL) with decoupled representation learning and classifier learning for imbalanced SSL. To handle the data imbalance, we devise Tail-class Feature Enhancement (TFE) for classifier learning. Furthermore, the current evaluation protocol for imbalanced SSL focuses only on balanced test sets, which has limited practicality in real-world scenarios. Therefore, we further conduct a comprehensive evaluation under various shifted test distributions. In experiments, we show that our approach outperforms other methods over a large range of shifted distributions, achieving state-of-the-art performance on benchmark datasets ranging from CIFAR-10, CIFAR-100, ImageNet, to Food-101. Our code will be made publicly available.


翻译:在本文中,我们提出一个新的共同学习框架(COSSL),为不平衡的SSL提供分解的代表性学习和分类学习。为了处理数据不平衡问题,我们设计了用于分类学习的尾级地物增强(TFE),此外,目前对不平衡的SSL的评价程序只侧重于平衡的测试组,在现实世界情景中,这种测试组的实用性有限。因此,我们进一步在各种转移式的测试分布下进行全面评估。在实验中,我们显示我们的方法优于其他方法,超越了广泛的转移式分布,在从CIFAR-10、CIFAR-100、图像网到Food-101等基准数据集上取得最先进的性能。我们的代码将公布于众。

0
下载
关闭预览

相关内容

100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
167+阅读 · 2020年3月18日
强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
12+阅读 · 2019年3月14日
VIP会员
相关VIP内容
相关资讯
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员