Participant noncompliance, in which participants do not follow their assigned treatment protocol, often obscures the causal relationship between treatment and treatment effect in randomized trials. In the longitudinal setting, the G-computation algorithm can adjust for confounding to estimate causal effects. Typically, G-computation assumes that both 1) compliance is observed; and 2) the densities of the confounders can be correctly specified. We aim to develop a G-computation estimator in the setting where both assumptions are violated. For 1), in place of unobserved compliance, we substitute in probability weights derived from modeling a biomarker associated with compliance. For 2), we fit semiparametric models using predictive mean matching. Specifically, we parametrically specify only the conditional mean of the confounders, and then use predictive mean matching to randomly generate confounder data for G-computation. In both the simulation and application, we compare multiple causal estimators already established in the literature with those derived from our method. For the simulation, we generated data across different sample sizes and levels of confounding. For the application, we apply our method to a trial that sought to evaluate the effect of cigarettes with low nicotine on cigarette consumption (Center for the Evaluation of Nicotine in Cigarettes Project 2 - CENIC-P2).


翻译:参与者没有遵守指定的治疗规程,经常模糊随机试验中的治疗和治疗效果之间的因果关系。在纵向环境中,G-计算算法可以调整,以适应对因果关系的估计。一般地,G-计算法假定,1)遵守;2)混淆者的密度可以正确指定。我们的目标是在两种假设都违反的环境下开发一个G-计算估计计算仪。1)对于未观察到的遵守,我们用模拟生物标记与合规相关的生物标记模型得出的概率加权值来替代。2)对于2,我们用预测平均值的匹配法来适应半参数模型。具体地说,我们用准参数来只说明连接者的有条件平均值,然后使用预测平均值来随机生成G-计算数据。在模拟和应用中,我们把文献中已经确定的多重因果关系估计数与我们的方法比较。对于模拟,我们生成了不同样本大小和水平的与合规相关的生物标志。2,我们用预测法只说明连接者的有条件的模型,然后用预测值来匹配,然后用预测值来随机生成C-计算数据。我们用一个方法来评估香烟低消费的测试。

0
下载
关闭预览

相关内容

【硬核书】矩阵代数基础,248页pdf
专知会员服务
84+阅读 · 2021年12月9日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
14+阅读 · 2022年10月15日
Arxiv
45+阅读 · 2022年9月19日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员