Ensuring robust robotic navigation in dynamic environments is a key challenge, as traditional testing methods often struggle to cover the full spectrum of operational requirements. This paper presents the industrial adoption of Surrealist, a simulation-based test generation framework originally for UAVs, now applied to the ANYmal quadrupedal robot for industrial inspection. Our method uses a search-based algorithm to automatically generate challenging obstacle avoidance scenarios, uncovering failures often missed by manual testing. In a pilot phase, generated test suites revealed critical weaknesses in one experimental algorithm (40.3% success rate) and served as an effective benchmark to prove the superior robustness of another (71.2% success rate). The framework was then integrated into the ANYbotics workflow for a six-month industrial evaluation, where it was used to test five proprietary algorithms. A formal survey confirmed its value, showing it enhances the development process, uncovers critical failures, provides objective benchmarks, and strengthens the overall verification pipeline.
翻译:暂无翻译