Generative adversarial networks (GANs) are known to benefit from regularization or normalization of their critic (discriminator) network during training. In this paper, we analyze the popular spectral normalization scheme, find a significant drawback and introduce sparsity aware normalization (SAN), a new alternative approach for stabilizing GAN training. As opposed to other normalization methods, our approach explicitly accounts for the sparse nature of the feature maps in convolutional networks with ReLU activations. We illustrate the effectiveness of our method through extensive experiments with a variety of network architectures. As we show, sparsity is particularly dominant in critics used for image-to-image translation settings. In these cases our approach improves upon existing methods, in less training epochs and with smaller capacity networks, while requiring practically no computational overhead.
翻译:众所周知,产生对抗网络(GANs)在培训期间得益于其批评者(批评者)网络的正规化或正常化。在本文中,我们分析广受欢迎的光谱正常化计划,发现一个重大缺陷,并引入宽度意识正常化(SAN),这是稳定GAN培训的一种新的替代方法。与其他正常化方法不同,我们的方法明确说明了在RELU启动的革命网络中地貌图的稀少性质。我们通过对各种网络结构的广泛试验来说明我们的方法的有效性。正如我们所显示的那样,在用于图像到图像翻译环境的批评者中,迷茫特别占主导地位。在这些情况下,我们的方法改进了现有方法,减少了对时代的培训和能力较小的网络,同时实际上不需要计算间接费用。