Predicting the evolution of a representative sample of a material with microstructure is a fundamental problem in homogenization. In this work we propose a graph convolutional neural network that utilizes the discretized representation of the initial microstructure directly, without segmentation or clustering. Compared to feature-based and pixel-based convolutional neural network models, the proposed method has a number of advantages: (a) it is deep in that it does not require featurization but can benefit from it, (b) it has a simple implementation with standard convolutional filters and layers, (c) it works natively on unstructured and structured grid data without interpolation (unlike pixel-based convolutional neural networks), and (d) it preserves rotational invariance like other graph-based convolutional neural networks. We demonstrate the performance of the proposed network and compare it to traditional pixel-based convolution neural network models and feature-based graph convolutional neural networks on multiple large datasets.
翻译:预测具有代表性的微结构材料样本的演进是同质化的一个根本问题。在这项工作中,我们提议了一个图形进化神经网络,直接使用初始微结构的离散表示,不进行分解或集群。与基于地貌的和基于像素的共振神经网络模型相比,拟议方法具有若干优点:(a) 其深度在于它不需要自发,但可以从中受益,(b) 它与标准的同级过滤器和层有简单的实施,(c) 它在不进行内插(与基于像素的共振神经网络不同)的情况下,自行使用非结构化和结构化的电网数据,以及(d) 它与其他基于图象的共振神经网络一样,保持旋转性。我们展示了拟议网络的性能,并将它与基于传统像素的共振动神经网络模型和基于地貌的多大数据集的图形进化神经网络进行比较。