Malicious attackers can generate targeted adversarial examples by imposing human-imperceptible noise on images, forcing neural network models to produce specific incorrect outputs. With cross-model transferable adversarial examples, the vulnerability of neural networks remains even if the model information is kept secret from the attacker. Recent studies have shown the effectiveness of ensemble-based methods in generating transferable adversarial examples. However, existing methods fall short under the more challenging scenario of creating targeted attacks transferable among distinct models. In this work, we propose Diversified Weight Pruning (DWP) to further enhance the ensemble-based methods by leveraging the weight pruning method commonly used in model compression. Specifically, we obtain multiple diverse models by a random weight pruning method. These models preserve similar accuracies and can serve as additional models for ensemble-based methods, yielding stronger transferable targeted attacks. Experiments on ImageNet-Compatible Dataset under the more challenging scenarios are provided: transferring to distinct architectures and to adversarially trained models. The results show that our proposed DWP improves the targeted attack success rates with up to 4.1% and 8.0% on the combination of state-of-the-art methods, respectively


翻译:恶意攻击者可以通过在图像上强加人无法察觉的噪音,迫使神经网络模型产生具体不正确的产出,从而产生有针对性的对抗性实例。通过跨模范可转移的对抗性实例,神经网络的脆弱性即使模型信息对攻击者保密,也依然存在。最近的研究显示,基于共性的方法在产生可转移的对抗性实例方面的有效性。然而,在更具有挑战性的情景下,在不同的模型中制造目标攻击的更具挑战性的情景下,现有方法不尽如人意。在这项工作中,我们提议通过利用模型压缩中常用的重力调整方法,进一步强化基于共性的方法。具体地说,我们通过随机加权裁剪裁方法获得多种不同的模型。这些模型保留了类似的精度,可以作为基于共性方法的额外模型,产生更强大的可转移的有针对性的攻击。在更具挑战性的设想下,对图像网络可比较的数据集进行了实验:向不同的架构和经过对抗性培训的模型转移。结果显示,我们提议的DWP改进了目标攻击成功率,分别达到4.1%和8.0%。

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
70+阅读 · 2022年6月28日
【2022新书】高效深度学习,Efficient Deep Learning Book
专知会员服务
114+阅读 · 2022年4月21日
专知会员服务
44+阅读 · 2020年10月31日
专知会员服务
38+阅读 · 2020年9月6日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
99+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Feature Denoising for Improving Adversarial Robustness
Arxiv
15+阅读 · 2018年12月9日
VIP会员
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员