Crime prediction is crucial for public safety and resource optimization, yet is very challenging due to two aspects: i) the dynamics of criminal patterns across time and space, crime events are distributed unevenly on both spatial and temporal domains; ii) time-evolving dependencies between different types of crimes (e.g., Theft, Robbery, Assault, Damage) which reveal fine-grained semantics of crimes. To tackle these challenges, we propose Spatial-Temporal Sequential Hypergraph Network (ST-SHN) to collectively encode complex crime spatial-temporal patterns as well as the underlying category-wise crime semantic relationships. In specific, to handle spatial-temporal dynamics under the long-range and global context, we design a graph-structured message passing architecture with the integration of the hypergraph learning paradigm. To capture category-wise crime heterogeneous relations in a dynamic environment, we introduce a multi-channel routing mechanism to learn the time-evolving structural dependency across crime types. We conduct extensive experiments on two real-world datasets, showing that our proposed ST-SHN framework can significantly improve the prediction performance as compared to various state-of-the-art baselines. The source code is available at: https://github.com/akaxlh/ST-SHN.
翻译:犯罪预测对于公共安全和资源优化至关重要,但由于以下两个方面,犯罪预测非常具有挑战性:一)时间和空间犯罪模式的动态,犯罪事件在空间和时间领域分布不均;二)不同类型犯罪(如盗窃、抢劫、攻击、损害)之间时间变化的依赖性,揭示了细微的犯罪词义;为应对这些挑战,我们提议建立空间-时序高射线网络(ST-SHN),以共同编码复杂的空间-时空犯罪模式以及基本类别犯罪语义关系。具体地说,为了在远程和全球背景下处理空间-时空动态,我们设计了一个图表结构化的信息传递结构,将超光学学习模式整合在一起。为了在动态环境中捕捉对类别有不同影响的犯罪关系,我们建议建立一个多频道的路径机制,以了解各种犯罪类型的时间变化结构依赖性。我们在两个真实世界数据集上进行广泛的实验,显示我们提议的ST-SHN框架可以大大改进在远程和全球背景下的空间-时空动态动态动态数据源。ST-HN框架可以显著地改进用于各种源的预测。ST-Squal/http-com源。