In this paper, we show that the constant-dimensional Weisfeiler-Leman algorithm for groups (Brachter & Schweitzer, LICS 2020) can be fruitfully used to improve parallel complexity upper bounds on isomorphism testing for several families of groups. In particular, we show: - Groups with an Abelian normal Hall subgroup whose complement is $O(1)$-generated are identified by constant-dimensional Weisfeiler-Leman using only a constant number of rounds. This places isomorphism testing for this family of groups into $\textsf{L}$; the previous upper bound for isomorphism testing was $\textsf{P}$ (Qiao, Sarma, & Tang, STACS 2011). - We use the individualize-and-refine paradigm to obtain a $\textsf{quasiSAC}^{1}$ isomorphism test for groups without Abelian normal subgroups, previously only known to be in $\textsf{P}$ (Babai, Codenotti, & Qiao, ICALP 2012). - We extend a result of Brachter & Schweitzer (arXiv, 2021) on direct products of groups to the parallel setting. Namely, we also show that Weisfeiler-Leman can identify direct products in parallel, provided it can identify each of the indecomposable direct factors in parallel. They previously showed the analogous result for $\textsf{P}$. We finally consider the count-free Weisfeiler-Leman algorithm, where we show that count-free WL is unable to even distinguish Abelian groups in polynomial-time. Nonetheless, we use count-free WL in tandem with bounded non-determinism and limited counting to obtain a new upper bound of $\beta_{1}\textsf{MAC}^{0}(\textsf{FOLL})$ for isomorphism testing of Abelian groups. This improves upon the previous $\textsf{TC}^{0}(\textsf{FOLL})$ upper bound due to Chattopadhyay, Tor\'an, & Wagner (ACM Trans. Comput. Theory, 2013).
翻译:在本文中,我们展示了针对群的常数维 Weisfeiler-Leman 算法 (Brachter & Schweitzer, LICS 2020) 可以用于改进多个群族的同构测试的并行複雜度的上限。我们展示了以下内容:
- 使用常数次迭代的常数维 Weisfeiler-Leman 可以仅在常数次迭代中识别仅由 $O(1)$-生成元的 Abel 普通 Hall 子群补充的群。这将此类群的同构测试置于 $\textsf{L}$ 中;此前同构测试的上限为 $\textsf{P}$ (Qiao, Sarma, & Tang, STACS 2011)。
- 我们使用个体化和细化范式,针对没有 Abel 普通子群的群族生成了一个 $\textsf{quasiSAC}^{1}$ 同构测试,该族群先前只知道在 $\textsf{P}$ 中找到 (Babai, Codenotti, & Qiao, ICALP 2012)。
- 我们将 Brachter 和 Schweitzer (arXiv,2021) 的直积群的结果扩展到了并行设置中。换句话说,我们还展示了 Weisfeiler-Leman 可以换行识别直积,前提是可以在并行中识别每个不可分解的直因子。他们先前在 $\textsf{P}$ 中展示了类似的结果。
最后,我们考虑没有计数的 Weisfeiler-Leman 算法,这时我们展示出无法通过计数自由的 WL 算法以多项式时间来识别 Abel 群。尽管如此,我们使用计数受限的非确定性有限状态自动机以及有限计数来测试 Abelian 群的同构,得到了一个新的 $\beta_{1}\textsf{MAC}^{0}(\textsf{FOLL})$ 上限。这将 Chattopadhyay、Torǎn 和 Wagner (ACM Trans. Comput. Theory,2013) 先前的 $\textsf{TC}^{0}(\textsf{FOLL})$ 上限进行了改进。