Motivation: 3D neuron segmentation is a key step for the neuron digital reconstruction, which is essential for exploring brain circuits and understanding brain functions. However, the fine line-shaped nerve fibers of neuron could spread in a large region, which brings great computational cost to the neuron segmentation. Meanwhile, the strong noises and disconnected nerve fibers bring great challenges to the task. Results: In this paper, we propose a 3D wavelet and deep learning based 3D neuron segmentation method. The neuronal image is first partitioned into neuronal cubes to simplify the segmentation task. Then, we design 3D WaveUNet, the first 3D wavelet integrated encoder-decoder network, to segment the nerve fibers in the cubes; the wavelets could assist the deep networks in suppressing data noises and connecting the broken fibers. We also produce a Neuronal Cube Dataset (NeuCuDa) using the biggest available annotated neuronal image dataset, BigNeuron, to train 3D WaveUNet. Finally, the nerve fibers segmented in cubes are assembled to generate the complete neuron, which is digitally reconstructed using an available automatic tracing algorithm. The experimental results show that our neuron segmentation method could completely extract the target neuron in noisy neuronal images. The integrated 3D wavelets can efficiently improve the performance of 3D neuron segmentation and reconstruction. Availability: The data and codes for this work are available at https://github.com/LiQiufu/3D-WaveUNet.
翻译:动力: 3D 神经神经断裂是神经数字重建的关键步骤, 这对于探索大脑电路和理解大脑功能至关重要。 然而, 神经神经元的细线状神经纤维可以在大区域扩散, 给神经分解带来巨大的计算成本。 与此同时, 强烈的噪音和断开的神经纤维会给任务带来巨大的挑战 。 结果 : 在本文中, 我们提议3D 波盘和基于 3D 神经分解的深学习方法 。 神经图象首先被分割到神经元立方体中, 以简化分解任务。 然后, 我们设计 3D WaveUNet, 第一个 3D 的神经神经元成形神经元综合解密网络, 以分割立心神经元的神经元分解码; 波状可以帮助深海网络抑制数据噪音, 连接断裂的纤维。 我们还提出一个 NeuCuD 数据集( NeuCu Da), 使用最大的附加神经元图像数据集, 大Neuron, 来训练 3D WaveUNet 。 最后, 神经元分解的神经元分解,, 在立体中, 立体中, 的神经元分解中, 正在重组中, 的解, 正在制成一个可生成解, 数据解, 数据解,, 直线路段,,,,,,, 直线路段,,,, 直线路段,,,,,, 解, 解, 解,,,,,,,,, 可以,,,,,,, 可以,,,,,,,,,,,,,,,,,,, 可以,,,,,,,,,,,,,,,,,,,,,,, 可以,,,,,,,,,,,,,,,,,